

AECOM 55 Cedar Pointe Drive, Suite 620 Barrie, ON, Canada L4N 5R7 www.aecom.com

705 797 3280 tel 705 734 0764 fax

Technical Memorandum

То	North Kent 1 LP		Page 1			
СС	Mark Van der Woerd (AECOM), Jody Law (Pattern), Joshua Vaidhyan (Samsung					
Subject	North Kent Wind 1 (Chatham-Ken Well Water Impact Complaint Inv (Dresden, ON)	· ·				
From	Jason Murchison, P.Geo.					
Date	December 8 th , 2017	Project No.	60343599			

1. Introduction and Background

AECOM Canada Ltd. (AECOM) has been retained by North Kent Wind 1 LP (NKW1) to provide hydrogeological services pursuant to *Condition G* of Renewable Energy Approval (REA) No. 5272-A9FHRL.

The purpose of this Technical Memorandum (TM) is to present a response to a water well interference complaint that was received by NKW1 via the Project's toll-free telephone line on 10-October-2017. Upon receipt of the complaint, email notification was provided by NKW1 (c/o Mr. Joshua Vaidhyan) to Ms. Deb Jacobs, Environmental Officer, with the Ministry of the Environment and Climate Change (MOECC), Windsor Area Office that same day. In his correspondence, Mr. Vaidhyan provides a summary narrative of the well interference complaint that was received from the property owners of the property

In brief, Mr. Vaidhyan describes the well interference complaint as follows:

We received a complaint on the Project's toll-free line, below.

PIN 007420039

Phone:

Located about 650 metres from T12. called to say his well went dry during the weekend. He got it going on Tuesday, but the water is quite turbid.

AECOM will be following up with this landowner. I will inform you regarding the date they schedule the sampling.

A copy of the NKW1 correspondence described above is provided herein as Attachment A.

2. REA Condition Response

Table 1 provides a summary of action(s) taken pursuant to REA Condition G5 in response to the current well interference complaint.

TABLE 1: REA CONDITIONS AND RESPONSE SUMMARY

REA CONDITIONS	ACTION(S) TAKEN
 G5. Should the Company receive a complaint about wells or well water from an owner of an active water well (i) within the Project Study Area; or (ii) outside of the Project Study area and located within 1 km from each individual Equipment and meteorological tower, the microwave tower, and the operations & maintenance building, the Company shall retain a qualified expert (P.Eng or P.Geo) to immediately undertake the following: (1) collect a water well sample at the complainant's water well, prior to any treatment systems ("raw"), after allowing the distribution system to flow for approximately 5 minutes and submit the water sample to a qualified laboratory for an analysis of the general chemistry suite of water quality parameters identified in Condition G3; (2) compare the results of the analysis of the water sample noted in Condition G5(1) to the preconstruction water sample at the subject well was taken); and, (3) provide a detailed written opinion as to whether the water sampling analysis results demonstrate that the construction, operation or decommissioning of the Facility caused or may have caused an adverse effect to the well's water supply. 	 Steps undertaken to satisfy the requirements of Condition G5 are summarized, as follows: (1) AECOM was retained by NKW1 to investigate a Well Interference Complaint received directly from the property owners on 10-October-2017. (2) AECOM arranged directly with the property owners an appointment to visit the property at 11:00am on 11-October-2017 (appointment based on property owner availability). (3) Tasks completed by AECOM during the well interference complaint site visit included: i) interview with the property owner regarding their reported well interference issue(s); ii) collection of a raw (untreated) groundwater sample for analytical laboratory testing; and, iii) digital photographs of pertinent site features (eg. well, pumping system, etc.). (4) Information obtained during the site visit has been compiled and is summarized within this technical memorandum. An opinion regarding potential association of the well interference complaint with local construction activities as part of the NKW1 Project is provided and potential remedial options are presented, as appropriate.

2.1 Property Owner Statements Regarding Well Interference Complaint

During AECOM's 11-October-2017 site visit to the subject property, a series of seven (7) standard questions were raised with the property owner (**Constitution**) for the purposes of obtaining further details regarding their reported well water supply issue(s). The questions raised with the property owner were as detailed on *Form B: Well Complaint Procedure for Site Investigation*, included as part of MOECC's approved *Well Interference Protocol* (AECOM, 2017) for the NKW1 project.

QUESTION	PROPERTY OWNER RESPONSE
"Please explain the type of problem you are having"	 Well stopped producing water on the afternoon of 8- October-2017.
	 Neighbours have had problems, so back up supply was arranged by resident for Thanksgiving party (portable tank with municipal water). Used tank until the morning of 10-October-2017, when the well was re-activated. Water was grey in colour and "coarse and fine shale" was observed.
	 Has two (2) samples collected, "normal" and discoloured sample for our information.
	 Has used well gingerly since reconnecting, it has not yet cleared up.
	 Quantity was normal on 11-October-2017 during investigation.
"What do you think is the cause?"	· Unsure.

TABLE 2: PROPERTY OWNER QUESTIONNAIRE RESPONSE SUMMARY

"When did you first notice the problem (Date/Time)?"	- 8-October-2017 at 1:30pm.
"Is the problem still occurring?"	 Running hose to flush well (mist through hose), not drinking the water. Collected sample in mason jar after disconnecting temporary supply.
"Do you have an alternate source of potable water (i.e. municipal water)?"	Arranged by homeowner temporarily.
"Were you provided a temporary supply of potable water?"	 Project representative coming 13-October-2017 to discuss temporary supply.
"Did you participate in the Detailed Well Assessment program prior to construction?"	· Yes

Upon completion of the questionnaire, the property owner (**Constitution**) was provided an opportunity to review the responses detailed in **Table 2** to ensure accuracy, but respectfully declined.

3. Construction Activities and Vibration Monitoring

Within a one (1) month timeframe preceding the property owner's reported outset of well impact (8-October-2017), no pile driving activities for foundation construction as part of the NKW1 project were completed within a 4.5 km radius of the site well.

The following four (4) turbines represent the closest foundation construction locations to the subject property:

- T12 July 4th to 6th @ 695 m South-Southeast
- T7 July 27th & 28th @ 1,070 m Northwest
- T31 July 13th, 14th, 17th & 18th @ 1,715 m West-Southwest
- T6 July 31st @ 3,225 m West-Northwest

Construction timeframes, along with approximate directions and distances away from the subject property are provided above for reference purposes. As can be observed, T12 and T7 represent the nearest two (2) turbine locations to the subject property. Pile driving at these turbine sites was completed in July 2017, more than two (2) months prior to the reported outset of well interference impact(s) at the subject property.

Monitoring of vibration effects during pile driving at each of the above-noted turbine locations was completed by Golder Associates Ltd. (GAL) on behalf of NKW1 in accordance with *Condition H* of the REA. The monitoring program developed and implemented by GAL (and as approved by MOECC) comprised the measurement of particle velocities at locations in close proximity to the piles, as well as at local private water well supplies. Vibration monitoring results obtained by GAL are summarized in a technical letter, dated 20-September-2017.

In addition to the foregoing, a site-specific vibration assessment pertaining to the subject property was completed by GAL, the results of which are presented in a letter, dated 24-November-2017.

A copy of each GAL letter is included herein as Attachment B.

Based on the vibration monitoring completed by GAL, the following interpretation and conclusions are presented within their 20-September-2017 technical letter:

In summary, vibration measurements obtained with the geophone system (Instantel Minimate) on all sites reported herein were within expectations as compared to those measured at the T5 and T42

test pile sites and general project expectations. On sites where piles penetrated through the near surface soils under their own weight or a low number of hammer blows (e.g., less than 5) the ground surface vibrations during this phase of pile driving for each pile were nominal. Ground surface vibrations measured when driving the piles on the glacial till or rock were also either comparable to or less than those at the test pile sites and, in all cases, were within expectations. Vibration measurements made using the accelerometers mounted on the well casings were also within expectations based on the T5 and T42 test pile sites and turbine to well distances.

Well monitoring to-date has identified several wells for which the vibrations induced by the pumps dominated the instrument readings when the pumps were active or other activities dominated the measured vibrations. Relevant notes regarding various pumps, their operation and other influences on vibration measurements are described below:

Well 3: Activities at the Well 3 property included crop harvesting, movement of farm vehicles and loading of haul trucks in relatively close proximity to Well 3.

Well 4: Maximum well casing vibration velocities for Well 4 of about 4.8 mm/s were recorded on September 6, 2017 when a well pump was connected, operated and adjusted and the owner made frequent return visits to the well shed. Crop harvesting was also carried out as close as about 25 m from the well casing.

Well 6: The pump for Well 6 is mounted in close proximity to the well casing (as illustrated on the attached Photograph 1). Maximum particle velocities of as much as 0.8 mm/s were obtained from monitoring data collected at Well 6 on July 13, 2017 when the well pump was operating during a time period without pile driving. The influences of the pump were readily discernable in the monitoring data. Approximately 1 minute after driving of Pile 1 for turbine T12 concluded, a loaded tractor-trailer dump truck drove by on the road near Well 6 and, at the same time, the resident was hammering in a nearby shed. Vibrations associated with the loaded dump truck were also perceptible by our well monitoring staff and registered at about 2.8 mm/s.

Well 9: A piston pump for Well 9 is located within the barn adjacent to the Well 9 casing location, a total distance (inside and outside) of about 3 to 4 m. During pile driving for turbines T28 and T32, on August 11, 2017, other work was occurring near Well 9. This work included construction along the access road leading to the T32 site and included movement of heavy equipment, excavator operations, dump truck traffic, discharge of stone from delivery vehicles and other activities. This surface construction work was as close as 100 m to Well 9. Additionally, Well 9 is approximately 74 m from Countryview Line that experiences significant traffic. Traffic included loaded construction equipment, buses, fuel tanker trucks and other vehicles. Golder conducted a separate monitoring event at this well on September 8, 2017 to measure the influence of the pump on well casing vibrations in the absence of pile driving. Maximum measured casing vibrations during this test were about 1.2 mm/s. Measurements at Well 9 on dates other than August 11, 2017 are consistent with expectations based on local traffic volumes and the potential influence of the adjacent piston pump.

Well 10: Well 10 exhibited maximum vibrations of about 1.25 mm/s during pump operation. The influence of pump operations were clearly discernable in the vibration monitoring data. The proximity of the pump and well casing are illustrated in the attached Photograph 2.

Well 11: Vibrations of the casing at Well 11 were measured during water quality sampling on August 17, 2017 in the absence of pile driving at any location. When the pump was operating, a maximum vibration magnitude of 0.016 mm/s was measured at this well. The pump is located within the residence and approximately 40 m from the well.

Well 12: During pile driving, Well 12 operated on a number of clearly definable occasions. Maximum vibration measurements of pump-induced well casing vibrations were as much as 2.4 mm/s. The pump for Well 12 is a piston pump mounted directly on top of the well casing as illustrated in the attached Photograph 3.

Well 13: Well 13 is located approximately 87 m from the centreline of Union Line which is subjected to local truck traffic. Review of the data indicates that well pumping and non-pile driving transient sources influenced the results at this location. Additional evaluation of transient, non-pile driving data is on-going and a specific monitoring period for well pump operation is being planned for a time without pile driving.

Well 14: Well 14 is located approximately 13 m from the centreline of Union Line which is subjected to local truck traffic. A limited evaluation of transient traffic vibrations indicated well casing velocities of at least 0.079 mm/s associated with this cause, though inspection of the data indicates higher values occurred outside of pile driving times. Additional evaluation of transient, non-pile driving data is on-going and a specific monitoring period for well pump operation is being planned for a time without pile driving.

In summary, measured vibrations have been evaluated and reported as associated with driving 329 piles and replacement piles on the glacial till/rock along with restrike events and pile dynamic testing events. These measurements have been obtained at the turbine sites and at wells located at distances ranging from 580 to 4,359 m from the turbine sites. It is our opinion, based on these measurements, that the vibration magnitudes at all wells during pile driving were within expectations, no greater than may be induced by other common day-to-day sources at these well sites, less than the observed and measured influence of well pumps and inconsequential for the wells.

The interpretation and conclusions above are reconfirmed by GAL within their site-specific assessment letter, dated 24-November-2017, which reads:

This letter is provided to summarize vibration monitoring data associated with Well Complaint 13 dated October 10, 2017 related to the well located at the second state of the period starting one day prior to the first reported issues, identified as October 8, 2017, through to one day following the date of the reported well condition complaint. Based on Golder's records, no piles were driven on October 7, 8 or 9, 2017 and therefore there is no vibration monitoring data for this period. Given that there was no pile driving during this period, it is our opinion that the reported conditions at the well would not have been related to pile driving.

4. Well Construction Details

Table 3 provides a summary of available construction details for the existing water well located at , based on details provided to AECOM by during our 11-October-2017 well interference complaint site visit, as well as information provided by the property owners on their completed water well survey (WWS) form and during our baseline site visit on 20-January-2017.

A review of the MOECC on-line database has revealed a water well record for the subject property that is consistent with the date of installation reported by the property owner (1989). Relevant information obtained from the MOECC record also is included in **Table 3**. In addition, a small number of other well installation and abandonment records also were located within the MOECC database for the subject property dating as far back as 1971 (with 2008 as most recent). A copy of the MOECC record interpreted to be associated with the currently used water well on the subject property is provided herein as **Attachment C**.

Visual assessment of the water well at surface did not reveal any apparent concerns, save for the well being equipped with an older slip-on style metallic well lid rather than a vermin-proof cap. A photograph of the well is provided as **Photo 1**.

DETAILS	(PIN 007420039)
Well Tag #	Not Applicable
Well ID	3308387
Installation Date	24-November-1988
Well Location	Side Yard (Northeast of Residence)
Contractor	Marvin Johanston
Contractor No.	3065
Construction Method	Cable Tool
Total Depth	19.2 mBGS (63')
Target Formation	Black Shale
Casing Length	18.9 mBGS (62')
Casing Diameter	127 mm (5")
Casing Material	Steel
Casing Stick-Up	0.40 m (as measured by AECOM)
Annular Seal	None Indicated on WWR
Sealant Type	None Indicated on WWR
Well Screen Installed?	No
Well Screen Details	Open Hole (Shale Bedrock)
Well Screen Interval	Not Applicable
Well Cover Type	Metallic Slip Cap (non vermin-proof)
Pump Intake Depth	15.2 mBGS (50') recommended on WWR (unconfirmed)
	15.2 L/min (4 USgpm) recommended on WWR (determined via air-lift)
Pumping Rate	21.0 L/min (5.5 USgpm) as measured by AECOM on 13-October-2017 (average of 3 separate flow rate measurements)
Well Pump Type	Jet Pump (as observed by AECOM)
Well Pump Size	1/2 hp (as observed by AECOM)
Static Level	4.0 mBGS (13') as on WWR
Pumping Level	7.6 mBGS (25') as on WWR

TABLE 3: REPORTED PRIVATE WELL CONSTRUCTION DETAILS

NOTE: mBGS - meters below ground surface; L/min – litres per minute; USgpm – US gallons per minute.

4.1 Limited Well Flow Rate Testing and Pumping System Assessment

During AECOM's site visit on 11-October-2017, a limited flow rate test was completed to assess the current pumping capacity of the jet pump connected to the well. This testing was completed using a standard hose faucet installed within the garage portion of the residence.

For the test, the water system was permitted to flush continuously for a period of approximately eleven (11) minutes using a 12 mm (1/2") hose assembly (provided and installed by AECOM) attached to the faucet orifice. During pumping, the discharge rate was assessed by AECOM on three (3) separate occasions. Flow rate measurement was completed by timing the discharge of 10 L of

water into a calibrated pail. Based on this monitoring, an average flow rate of approximately 21 L/min (5.5 USgpm) was determined for the residence's water system (affected by pressure tank). Discharge from the hose was directed to ground at the exterior of the residence.

Gas bubbles were observed within the discharge water stream which remained relatively consistent during testing and subsequent sample collection activities.

No variation in flow rate (including increasing or decreasing trends) was observed during testing. Similarly, no detectable changes in the quality of the water discharge stream (eg. colour, odour, dissolved gas, sediment, etc.) were identified.

PHOTO 1: Drilled Water Well (as observed on 20-January-2017)

5. Water Quality Data

Table 4 provides a summary of available groundwater quality data for the site well.
 Laboratory

 Certificates of Analysis are included as **Attachment D**.
 D.

LOCATION	SAMPLED BY	DATE	TYPE	PURPOSE	
	AECOM	20-January-2017	Raw (Untreated)	Baseline	
	AECOM	11-October-2017	Raw (Untreated)	Complaint Investigation	

TABLE 4: PRIVATE WELL SAMPLING SUMMARY

5.1 Discussion

Available raw (untreated) groundwater quality data for the well is provided in **Table 5**, which includes analysis results for AECOM's 11-October-2017 complaint investigation site visit, as well as baseline (pre-construction) sampling that was completed on 20-January-2017.

PARAMETER	ODWQS CRITERIA	ODWQS TYPE	BASELINE (20-January-2017)	COMPLAINT INVESTIGATION (11-October-2017)	
Escherichia coli	0 CFU/100mL	MAC	NDOGN	Non detection	
Total Coliforms	0 CFU/100mL	MAC	NDOGN	90 CFU/100 mL	
Electrical Conductivity			548 µS/cm	540 µS/cm	
рН	6.5 - 8.5	OG	8.23	8.21	
Total Hardness (as CaCO ₃)	80 – 100 mg/L	OG	36.7 mg/L	37.2 mg/L	
Total Dissolved Solids	500 mg/L	AO	292 mg/L	318 mg/L	
Total Suspended Solids			<10 mg/L	<10 mg/L	
Alkalinity (as CaCO ₃)	30 – 500 mg/L	OG	258 mg/L	269 mg/L	
Fluoride	1.5	MAC	1.37 mg/L	1.44 mg/L	
Chloride	250	AO	20.7 mg/L	20.8 mg/L	
Nitrate as N	10	MAC	<0.05 mg/L	<0.05 mg/L	
Nitrite as N	1	MAC	<0.05 mg/L	<0.05 mg/L	
Bromide			0.26 mg/L	<0.05 mg/L	
Sulphate	500 mg/L	AO	<0.10 mg/L	<0.10 mg/L	
Ammonia as N			0.09 mg/L	0.69 mg/L	
Dissolved Organic Carbon	5 mg/L	AO	3.8 mg/L	4.2 mg/L	
Colour	5 TCU	AO	19 TCU	67 TCU	
Turbidity	5 NTU	AO	3.7 NTU	10.9 NTU	
Calcium			9.29 mg/L	9.44 mg/L	
Magnesium			3.29 mg/L	3.32 mg/L	
Sodium	200 mg/L	AO	114 mg/L	116 mg/L	
Potassium			1.33 mg/L	1.37 mg/L	
Iron	0.300 mg/L	AO	0.010 mg/L	0.733 mg/L	
Manganese	0.050 mg/L	AO	0.002 mg/L	0.011 mg/L	

TABLE 5: RAW (UNTREATED) GROUNDWATER SAMPLING RESULTS

NOTE: MAC – maximum acceptable concentration (health-related); AO – Aesthetic Objective (non health-related); Operational Guideline (non health-related); NDOGN – No Data, Sample Overgrown with Target (refers to over-crowding microbial growth).

At the time of AECOM's baseline site visit on 20-January-2017, no water treatment devices were observed to be present within the residence. Likewise, no treatment equipment was observed during our 13-October-2017 site visit.

Raw (untreated) groundwater sample collection during AECOM's 13-October-2017 site visit was completed using a standard hose faucet located in the garage portion of the residence; that same location as that which was utilized during baseline sampling (ref. **Photo 2**). Prior to sampling, the faucet was permitted to flush thoroughly with the pumped water being directed to ground at the exterior of the residence. Prior to sample collection, the discharge hose was removed and the faucet orifice was disinfected (using chlorine) and flushed. Clean nitrile gloves were worn by AECOM staff during sample collection.



PHOTO 2: Sampling and Flow Rate Testing Location in Garage (as observed on 11-October-2017)

The groundwater sample was examined by AECOM in the field for visual and olfactory evidence of impact then immediately placed in laboratory-supplied sample bottles prepared in advance with the appropriate preservatives, sealed, labeled and stored on ice to maintain a sample temperature of 10°C or lower during transportation under chain of custody documentation to a CALA-accredited environmental analytical laboratory within the specified sample analyte holding times.

A detectable population of total coliforms (90 CFU/100 mL) was identified within the raw (untreated) groundwater sample collected from the well on 11-October-2017. This result is consistent with baseline sampling results where significant (ie. overgrown) bacteriological populations for both total coliforms and Escherichia coli (E.coli) were identified. It is noted that E.coli was determined to be absent in the most recent water quality sample. Both total coliforms and E.coli represent health-related parameters of the Ontario Drinking Water Quality Standards (ODWQS). It is recommended that the property owner seek the guidance of MOECC, their local Public Health Unit, and/or an experienced water treatment specialist to address the elevated levels of bacteria within the well.

No exceedances of inorganic health-related parameters analyzed, including Nitrate (as N), Nitrite (as N), and Fluoride, were detected either in the baseline or complaint investigation raw (untreated) groundwater samples collected from the existing on-site well supply.

Turbidity is an Aesthetic Objective (AO) of the ODWQS. In this regard, a value of 5 Nephelometric Turbidity Units (NTU) has been established by MOECC. The MOECC's *Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines* (June 2003; revised June 2006) makes a clear distinction between turbidity related to organic constituents and inorganic constituents

60343599_NKW1 WQA TM_2017-12-08.Docx

stating: "Raw water supply which is ground water with very low organic content may contain inorganic-based turbidity, which may not seriously hinder disinfection. For such waters, an Operational Guideline for turbidity is not established". Further guidance is provided by MOECC regarding the relationship between turbidity and its organic and inorganic components, the disinfection processes, and as a measure of the water supply filtration and treatment efficiency. The technical explanations also note that while organic turbidity is an important measure as related to health concerns, the AO value is an aesthetic component which is set for all waters at the point of consumption (i.e., not at the source). At the site well, turbidity levels were 3.7 NTU in the baseline sample and 10.9 NTU during the recent well interference complaint site visit. The latter value was somewhat higher than the baseline sample and above the ODWQS AO limit.

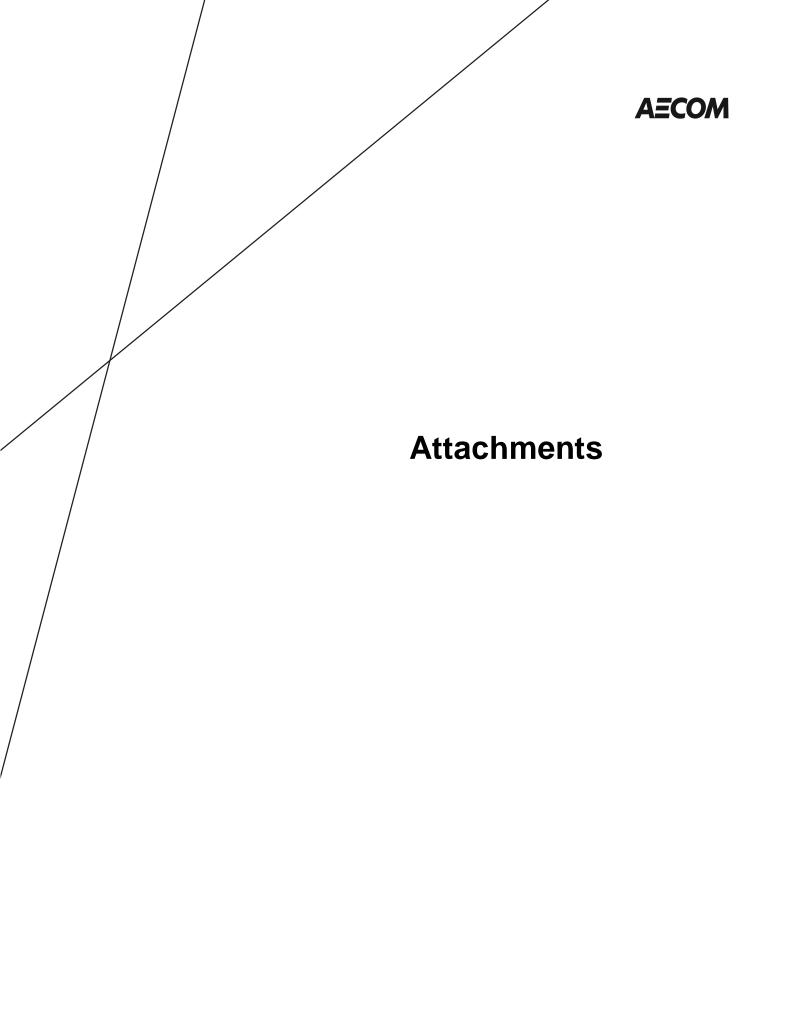
Iron concentrations were determined to be in excess of its ODWQS AO limit of 0.3 mg/L in the complaint investigation (0.733 mg/L) raw groundwater sample collected by AECOM from the site well. Elevated concentrations of iron can impart a brownish discolouration to water (including staining of fixtures and laundry) and can also provide an astringent taste during consumption. It is surmised that the elevated concentration of iron in the sample is correlated with the similarly elevated turbidity level and is interpreted to be of a natural (non-anthropogenic) source.

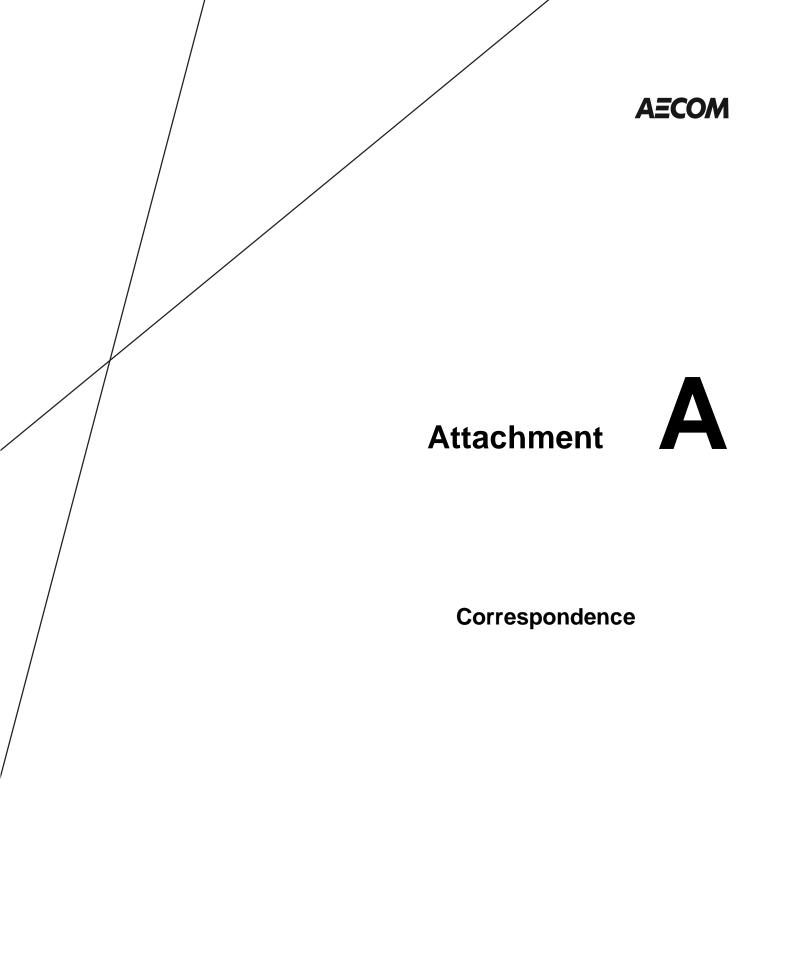
Where elevated iron concentrations occur in well water, the presence of iron-related bacteria (IRB) is not uncommon. IRB combine iron (as well as manganese, where present) with oxygen as part of their metabolic processes to form visible 'rust' deposits / stains (eg. yellow, orange, red or brown) that are typically associated with a greasy or slimy texture. Various foul odours may also be associated with the presence of IRB within a well water system (eg. rotten egg, swampy, sewage-like, etc.). The 'slime' will tend stick to fixtures and water system components, including filter elements, pump foot valve assemblies, and well screens, which can result in flow restrictions over time. While not assessed as part of this investigation, IRB may potentially be present within the site well which could affect sample results, most notably turbidity. Although being a nuisance, there is no documented health risk associated with IRB, if present, and can be managed through treatment combined with regular maintenance disinfection of the well supply.

Total suspended solids (TSS) levels within both the baseline and complaint investigation raw groundwater samples were below laboratory method detection limits indicating a relative absence of detectable sediment load in the raw (untreated) groundwater pumped from the well. An ODWQS criteria limit has not been established for this parameter.

The potential for groundwater quality impact(s) associated with pile driving is both time-dependent and related to the intensity and propagation of ground-borne vibration. In this instance, no pile driving activities were completed within a radial distance of 4.5 km from the site well within a timeframe of one (1) month prior to the reported outset of well impacts (8-October-2017). As such, no vibrations attributable to pile driving activities as part of the NKW1 project would have been present in proximity to the site well either immediately prior to or on the date of outset of impact, as reported by the property owners.

As an alternate consideration, to have the potential to impact the subject well vibration impacts in the immediate vicinity of a pile driving (turbine) location would have needed to result in: i) the suspension of settled particles within the groundwater system; ii) the particles remaining in suspension for a prolonged period of time; and, iii) the water well being situated in a position hydraulically downgradient of and/or within the radius of pumping influence relative to the pile driving location. Factors (ii) and (iii) above are not considered plausible in the context of the local hydrogeological setting (ie. potential hydraulic gradient and groundwater travel times), vibration monitoring data collected by GAL, and recent sampling results.


6. Conclusions


Based on a review and interpretation of information gathered during AECOM's well interference complaint investigation, as presented herein, it is our opinion that the groundwater quality issue reported by the property owners at **Sector Control** (PIN 007420039) is *not* as a result of NKW1 turbine foundation construction or pile-driving activities as no work had been completed within a 4.5 km radius of the subject property within a one (1) month period prior to the reported outset of well impact on 8-October-2017.

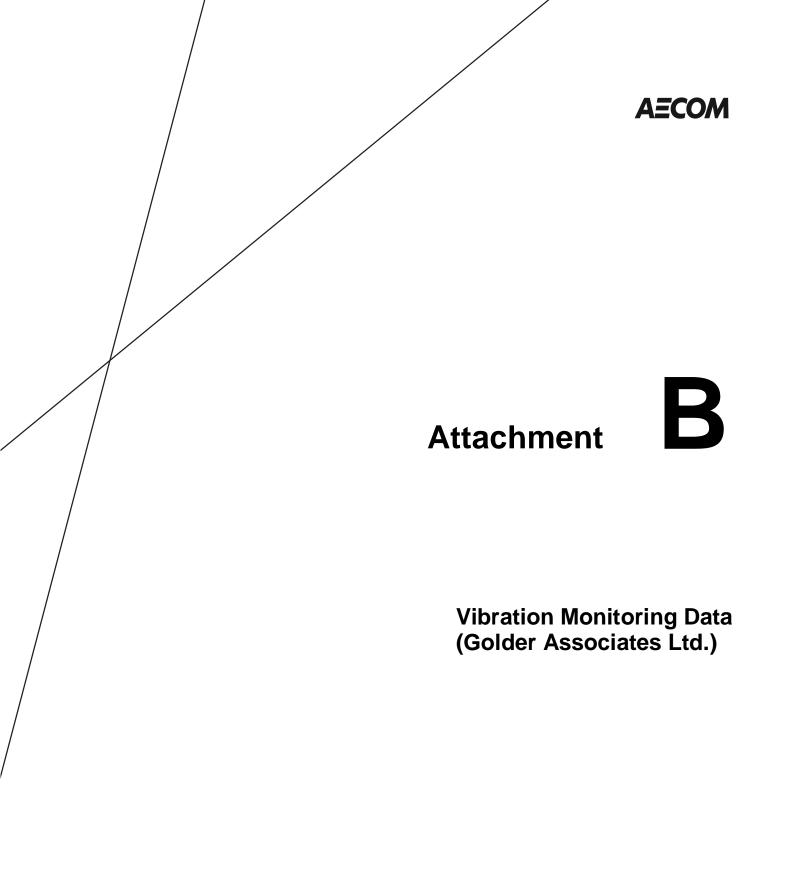
The water well impact(s) reported by the property owner appear to be related to local water system issues versus an area-wide impact to the local groundwater system. As noted within this report, consultation with a qualified professional regarding the current condition of the on-site well supply / pumping system, and bacteriological quality of the raw water source is recommended.

This interpretation and opinions presented in this technical memorandum are based on information available as of the date the document was prepared. Should additional information become available at a future date, AECOM reserves the right to review and potentially reconsider the findings of our current assessment through the issuance of addenda to this technical memorandum.

-- End of Memorandum --

Murchison, Jason

From:	Joshua Vaidyan <j.vaidhyan@samsung.com></j.vaidhyan@samsung.com>
Sent:	Tuesday, October 10, 2017 4:47 PM
To:	'Jacobs, Deb (MOECC)'
Cc:	'Gilbert, Teri (MOECC)'; 'Smith, Mark (MOECC)'; 'Harman, Bruce (MOECC)'; 'Thuss,
	Simon (MOECC)'; 'Moroney, Michael (MOECC)'; 'Lehouillier, Jason (MOECC)';
	'McDonald, Dan (MOECC)'; 'Pat Murray'; Murchison, Jason; 'Sre.Bop'; 'Boone, Storer';
	'Colella, Nick (MOECC)'; 'Keyvani, Mohsen (MOECC)'; 'Jody Law'; Van der Woerd, Mark
Subject:	New Complaint - North Kent 1


Hi Deb,

We received a complaint on the Project's toll-free line, below.

PIN 007420039	
Phone:	

Located about 650 metres from T12. called to say his well went dry during the weekend. He got it going on Tuesday, but the water is quite turbid.

AECOM will be following up with this landowner. I will inform you regarding the date they schedule the sampling.

November 24, 2017

Project No. 1668031-2000-L23

Mr. Jody Law c/o North Kent Wind 1 LP 355 Adelaide Street West, Suite 1000 Toronto, ON M5V 1S2

WATER WELL COMPLAINT 13 NORTH KENT WIND 1 PROJECT CHATHAM-KENT, ONTARIO

Dear Mr. Law:

This letter is provided to summarize vibration monitoring data associated with Well Complaint 13 dated October 10, 2017 related to the well located at **Sector 10** in Chatham-Kent, Ontario. Golder Associates Ltd. (Golder) has been requested to summarize vibration monitoring data for the period starting one day prior to the first reported issues, identified as October 8, 2017, through to one day following the date of the reported well condition complaint. Based on Golder's records, no piles were driven on October 7, 8 or 9, 2017 and therefore there is no vibration monitoring data for this period. Given that there was no pile driving during this period, it is our opinion that the reported conditions at the well would not have been related to pile driving.

We trust that this letter is adequate for your present requirements. If any point requires further clarification, please contact this office.

PROFESSIONAL Yours truly, **GOLDER ASSOCIA** BOONE 550793 OF OF ONTARIO POF Storer J. Boone, Ph.D Principal SJB/MEB/cr CC: J. Vaidyan, Samsung

n:\active\2016\3 proj\1668031 pattern_north kent vib monit_chatham-kent\ph 2000-vib monit field work\2-correspondence\3-ltrs\l23\1668031-2000-l23 nov 24 17 water well complaint 13.docx

Golder Associates Ltd. 309 Exeter Road, Unit #1, London, Ontario, Canada N6L 1C1 Tel: +1 (519) 652 0099 Fax: +1 (519) 652 6299 www.golder.com Golder Associates: Operations in Africa. Asia. Australasia. Europe, North America and South America

September 20, 2017

Project No. 1668031-2000-L06

Mr. Jody Law c/o North Kent Wind 1 LP 355 Adelaide Street West, Suite 1000 Toronto, ON M5V 1S2

SUMMARY OF VIBRATION MONITORING FOUNDATION PILE DRIVING – MULTIPLE TURBINES NORTH KENT WIND 1 PROJECT CHATHAM-KENT, ONTARIO

Dear Mr. Law:

Please find attached a summary of the vibration monitoring that has been undertaken during driving of foundation piles for turbines being constructed as part of the North Kent Wind 1 project (NK1) at the locations listed in Table 1 (following the text of this letter) through to September 12, 2017, exclusive of data for Turbines T26 and T27 as these are still being processed and analyzed. Vibration monitoring was carried out to meet Section H1 of the Renewable Energy Approval (REA) document issued by the Ontario Ministry of the Environment and Climate Change (MOECC). The work was carried out in accordance with a vibration monitoring program prepared by Golder Associates Ltd. (Golder) dated June 2, 2017 and subsequently approved by MOECC and issued June 9, 2017.

This report addresses vibration monitoring data obtained during pile foundation driving at the turbine sites and domestic water well pairs listed in Table 1, attached, as defined by the times and dates for pile driving within the seven geographic turbine clusters. The locations of the turbines and associated wells are illustrated on the attached figures. The attached pages of summary data and notes include particle velocity measurements made at the referenced sites that were taken in close proximity to the pile driving together with measurements obtained at domestic water well casings associated with the relevant turbine clusters. Previously issued summary pages have been updated to reflect changes, if and as applicable, related to:

- detailed review of Instantel Minimate data histogram files for the turbine sites;
- well and turbine site vibration monitoring data associated with pile dynamic analyser testing, subsequent pile restrikes or replacements;
- monitoring of vibrations during well pump operating periods in the absence of pile driving;

- examination of vibration data associated with background conditions, other transient vibration sources (e.g., road traffic, movement of farm equipment, pump maintenance) and/or time durations during which pile driving was not actively in progress;
- clarifications or additions to pile driving monitoring notes; and
- typographical/clerical corrections, if and as needed.

The vibration measurements as reported on the attached pages are considered finalized for the analysis time periods, stated conditions and the context of this report. Golder reserves the right to update reports for the various turbine sites and wells as additional information becomes available and to address any of the items noted above. In particular, additional evaluation of turbine site geophone data is anticipated whereby actual off-set distances and vibration measurements at specific piles and times of day may be updated rather than the current listing of daily maximum measurements. A finalized report will be issued after the conclusion of all pile driving for this project.

Monitoring Work Plan

Vibration monitoring was carried out in accordance with the June 2, 2017 work plan submitted to and approved by the MOECC and reissued on June 9, 2017. In summary, key elements of the work plan include:

- Pile driving at the turbine sites is visually monitored by a Golder staff member who keeps notes regarding start and stop times of active pile hammering, monitoring data logging and instrument status and other site conditions as relevant to the pile driving. Ground surface vibrations at each turbine site are being monitored with two Instantel Minimate Pro III or Pro IV systems. Two systems are being utilized to allow periodic downloading of data so that vibrations, if any, could then be captured by the other redundant system. The geophone systems captured vibration velocities in three mutually perpendicular directions. One direction was vertical and the longitudinal direction was oriented toward the closest pile with the third (transverse) direction being determined by the other two.
- Three accelerometers are being securely coupled to the monitored well casings for which permissions to enter and carry out monitoring have been obtained. The accelerometers are oriented in three mutually perpendicular directions. One direction is vertical and the longitudinal direction is oriented toward the closest pile driving operation, with the third (transverse) direction being determined by the other two. Golder personnel monitor the instrument status and any other relevant activities around the wells such as local road traffic, movements of farm equipment, traffic in and out of the well properties, other construction activities (if any) and well pump operations or maintenance.

Overview of Pile Driving Conditions and Monitoring Notes

Pile driving at the turbine sites was conducted after constructing an access road, stripping topsoil, excavating to approximately 2.6 m below the ground surface and placing a concrete working pad. The concrete working pads have been fitted with pre-formed openings for the piles or constructed to a smaller diameter with the piles driven just beyond the outer perimeter of the concrete. Pile driving cranes were operated on timber mats placed on the concrete. Typically, piles were driven with the same hammer type as used for the pre-construction test pile and vibration monitoring program. In one case, a different hammer was used with a significantly lower driving energy. Subsequent use of this hammer has been rejected by the constructor.

On the attached monitoring reports, three times are reported for each driven pile. The column heading "Start" refers to the time of day when the pile hammering commenced on the indicated pile. Times of other site activities, such as crane movements, welding, equipment start-up and other work occurring prior to start of active pile hammering were not recorded except in specific instances where the turbine site geophones were inadvertently influenced by other equipment operating too closely. The column heading "Rock/Till" indicates the time at which hard driving started, as evidenced by the rate of pile depth change as compared to the numbers of hammer strikes on the pile. Commonly, the piles penetrated the first few metres of ground under their own weight, with nominal pile driving effort required until the underlying glacial till and/or rock was encountered. In many cases, the pile driving resistance in the upper soil layers was insufficient to engage the firing mechanism in the diesel hammer. Upon reaching the glacial till, the pile hammer fully engaged for the remainder of driving. The column heading "End" indicates the time of day at which active pile hammering ceased for the identified pile. While the total pile driving duration can be determined by the difference between the "Start" and "End" times, the duration of active pile hammering was frequently interrupted by pile splicing, welding, equipment repair, decision-making required for pile termination depths, pile testing and daily labour breaks. Many of these start and stop instances are identified on the attached summary pages.

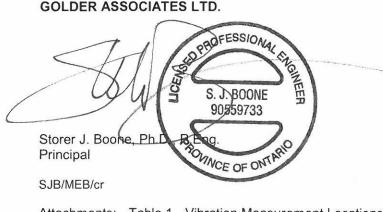
Summary of Results

In summary, vibration measurements obtained with the geophone system (Instantel Minimate) on all sites reported herein were within expectations as compared to those measured at the T5 and T42 test pile sites and general project expectations. On sites where piles penetrated through the near-surface soils under their own weight or a low number of hammer blows (e.g., less than 5) the ground surface vibrations during this phase of pile driving for each pile were nominal. Ground surface vibrations measured when driving the piles on the glacial till or rock were also either comparable to or less than those at the test pile sites and, in all cases, were within expectations. Vibration measurements made using the accelerometers mounted on the well casings were also within expectations based on the T5 and T42 test pile sites and turbine to well distances.

Well monitoring to-date has identified several wells for which the vibrations induced by the pumps dominated the instrument readings when the pumps were active or other activities dominated the measured vibrations. Relevant notes regarding various pumps, their operation and other influences on vibration measurements are described below:

- Well 3: Activities at the Well 3 property included crop harvesting, movement of farm vehicles and loading of haul trucks in relatively close proximity to Well 3.
- Well 4: Maximum well casing vibration velocities for Well 4 of about 4.8 mm/s were recorded on September 6, 2017 when a well pump was connected, operated and adjusted and the owner made frequent return visits to the well shed. Crop harvesting was also carried out as close as about 25 m from the well casing.
- Well 6: The pump for Well 6 is mounted in close proximity to the well casing (as illustrated on the attached Photograph 1). Maximum particle velocities of as much as 0.8 mm/s were obtained from monitoring data collected at Well 6 on July 13, 2017 when the well pump was operating during a time period without pile driving. The influences of the pump were readily discernable in the monitoring data. Approximately 1 minute after driving of Pile 1 for turbine T12 concluded, a loaded tractor-trailer dump truck drove by on the road near Well 6 and, at the same time, the resident was hammering in a nearby shed. Vibrations associated with the loaded dump truck were also perceptible by our well monitoring staff and registered at about 2.8 mm/s.

- Well 9: A piston pump for Well 9 is located within the barn adjacent to the Well 9 casing location, a total distance (inside and outside) of about 3 to 4 m. During pile driving for turbines T28 and T32, on August 11, 2017, other work was occurring near Well 9. This work included construction along the access road leading to the T32 site and included movement of heavy equipment, excavator operations, dump truck traffic, discharge of stone from delivery vehicles and other activities. This surface construction work was as close as 100 m to Well 9. Additionally, Well 9 is approximately 74 m from Countryview Line that experiences significant traffic. Traffic included loaded construction equipment, buses, fuel tanker trucks and other vehicles. Golder conducted a separate monitoring event at this well on September 8, 2017 to measure the influence of the pump on well casing vibrations in the absence of pile driving. Maximum measured casing vibrations during this test were about 1.2 mm/s. Measurements at Well 9 on dates other than August 11, 2017 are consistent with expectations based on local traffic volumes and the potential influence of the adjacent piston pump.
- Well 10: Well 10 exhibited maximum vibrations of about 1.25 mm/s during pump operation. The influence of pump operations were clearly discernable in the vibration monitoring data. The proximity of the pump and well casing are illustrated in the attached Photograph 2.
- Well 11: Vibrations of the casing at Well 11 were measured during water quality sampling on August 17, 2017 in the absence of pile driving at any location. When the pump was operating, a maximum vibration magnitude of 0.016 mm/s was measured at this well. The pump is located within the residence and approximately 40 m from the well.
- Well 12: During pile driving, Well 12 operated on a number of clearly definable occasions. Maximum vibration measurements of pump-induced well casing vibrations were as much as 2.4 mm/s. The pump for Well 12 is a piston pump mounted directly on top of the well casing as illustrated in the attached Photograph 3.
- Well 13: Well 13 is located approximately 87 m from the centreline of Union Line which is subjected to local truck traffic. Review of the data indicates that well pumping and non-pile driving transient sources influenced the results at this location. Additional evaluation of transient, non-pile driving data is on-going and a specific monitoring period for well pump operation is being planned for a time without pile driving.
- Well 14: Well 14 is located approximately 13 m from the centreline of Union Line which is subjected to local truck traffic. A limited evaluation of transient traffic vibrations indicated well casing velocities of at least 0.079 mm/s associated with this cause, though inspection of the data indicates higher values occurred outside of pile driving times. Additional evaluation of transient, non-pile driving data is on-going and a specific monitoring period for well pump operation is being planned for a time without pile driving.


In summary, measured vibrations have been evaluated and reported as associated with driving 329 piles and replacement piles on the glacial till/rock along with restrike events and pile dynamic testing events. These measurements have been obtained at the turbine sites and at wells located at distances ranging from 580 to 4,359 m from the turbine sites. It is our opinion, based on these measurements, that the vibration magnitudes at all wells during pile driving were within expectations, no greater than may be induced by other common day-to-day sources at these well sites, less than the observed and measured influence of well pumps and inconsequential for the wells.

We trust that this letter is adequate for your present requirements. If any point requires further clarification, please contact this office.

Yours truly,

GOLDER ASSOCIATES LTD.

Attachments: Table 1 - Vibration Measurement Locations Photographs of Wells 6, 10 and 12 Pump Configurations Preliminary Vibration Monitoring Summaries and Figures, Turbines T3, T4, T6, T7, T12, T14, T20, T21, T28, T30, T31, T32, T33, T35, T36, T43, T45 and T46

n:\active\2016\3 proj\1668031 pattern_north kent vib monit_chatham-kent\ph 2000-vib monit field work\2-correspondence\3-ltrs\106\1668031-2000-l06 sep 20 17 summary of vibration monitoring.docx

Turbine Cluster 1		
Turbine	Well	Well
Turbine Cluster 1		
T12		
T35	5 (6 (
T36		
Turbine Cluster 2		
Т6		
T7	7 (8 (
T31		
Turbine Cluster 3		
T28		
T30	9 (10 (
T32		
Turbine Cluster 4		
Т3		
T4		
T20		
T21	11 (12 (
T43		
T45		
T46		
Turbine Cluster 5		
Т33	3 (4 ()
Turbine Cluster 6		
T14		
T26	13 (14 (
T27		
Turbine Cluster 7		
No construction pile driving to date of this report	1A ()	2 (

TABLE 1 – VIBRATION MEASUREMENT LOCATIONS

Note: Table to be read in conjunction with accompanying text.

Prepared By: SJB Checked By: DB

SITE PHOTOGRAPHS

Photograph 1: Well 6 illustrating proximity of pump, hoses and tank to well casing.

Photograph 2: Well 10 illustrating proximity of pump, hoses and tank to well casing.

Photograph 3: Well 12 illustrating pump mounted directly on well casing.

Turbine Location: T3

	Daily Maximum	Vibration Measurements at Wells					
Pile I	Driving Times and Date	es		Particle Velocity	Particl	e Velocity (n	nm/s) ^{c, d}
Pile No.: Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 11	Well 12	No Pump ^e
1 8/23/2017 10:0	•	8/23/2017 10:11	21.6	7.27	NA ^e	0.021	
2 8/23/2017 11:2		8/23/2017 12:35	23.2	7.27	0.011	0.003	
3 8/23/2017 11:4		8/23/2017 12:41	24.2	7.27	0.024	0.013	
4 8/23/2017 12:1	2 8/23/2017 12:19	8/23/2017 12:21	24.5	7.27	0.014	0.010	
5 8/23/2017 9:43	8/23/2017 9:49	8/23/2017 9:52	24.2	7.27	NA ^e	0.010	
6 8/23/2017 9:28	8/23/2017 9:35	8/23/2017 9:35	23.2	7.27	NA ^e	0.004	
7 8/22/2017 12:1		8/22/2017 12:57	21.6	8.26	0.015	0.016	
8 8/22/2017 18:4		8/22/2017 18:54	19.4	8.26	0.013	0.004	
9 8/22/2017 16:5	2 8/22/2017 16:58	8/22/2017 17:00	16.8	8.26	0.018	0.011	
10 8/22/2017 18:1		8/22/2017 18:32	13.9	8.26	0.014	0.008	
11 8/22/2017 16:3	4 8/22/2017 16:40	8/22/2017 16:45	11.0	8.26	0.022	0.025	
12 8/22/2017 17:4	8 8/22/2017 17:57	8/22/2017 18:08	8.7	8.26	0.011	0.003	
13 8/22/2017 16:0	8 8/22/2017 16:16	8/22/2017 16:18	7.7	8.26	0.007	0.029	
14 8/22/2017 17:2	9 8/22/2017 17:38	8/22/2017 17:39	8.7	8.26	0.012	0.013	
15 8/22/2017 14:2	7 8/22/2017 14:33	8/22/2017 15:41	11.0	8.26	0.066	0.008	
16 8/22/2017 17:1	3 8/22/2017 17:20	8/22/2017 17:20	13.9	8.26	0.026	0.005	
17 8/22/2017 13:1	4 8/22/2017 13:22	8/22/2017 15:48	16.8	8.26	0.046	0.008	
18 8/23/2017 11:0	5 8/23/2017 11:12	8/23/2017 11:16	19.4	7.27	0.018	0.014	
Restrikes							
7C 8/23/2017 18:2	7 8/23/2017 18:27	8/23/2017 18:31	21.6	7.27	0.023	1.354	0.022
8C 8/23/2017 8:14		8/23/2017 8:14	19.4	7.27	0.010	0.004	
11C 8/23/2017 8:18		8/23/2017 8:18	11.0	7.27	0.009	2.405	0.006
12C 8/23/2017 8:22		8/23/2017 8:22	8.7	7.27	0.009	2.405	0.006
13C 8/23/2017 8:25		8/23/2017 8:26	7.7	7.27	0.009	0.007	0.000
14C 8/23/2017 8:28		8/23/2017 8:28	8.7	7.27	0.007	0.007	
16C 8/23/2017 8:31		8/23/2017 8:32	13.9	7.27	0.007	0.007	
17C 8/23/2017 8:34		8/23/2017 8:32	16.8	7.27	0.007	0.007	
6 8/23/2017 12:1		8/23/2017 12:15	23.2	7.27	0.025	0.023	
Replacement Piles	4 0/23/2017 12.13	0/23/2017 12:13	23.2	1.21	0.025	0.025	
7A 9/6/2017 12:05	9/6/2017 12:14	9/6/2017 12:19	20.6	1.99	0.033	0.005	
,,, ,, ,, ,, 2017 12.05	5/ 0/ 2017 12:14	5, 6, 201, 12,13	20.0	1.55	0.000	0.000	
Well Information							
Well No.: 11				Well No.: 12	_		
Municipal Address:				Municipal Address:			
Distance from Turbine Cent	tre: 170	07 m		Distance from Turbine	Centre:	1264	l m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Continued pile driving on subsequent days are marked "C". Replacement piles are marked "A". Vibration measurements were undertaken on August 17, 2017 at Wells 11 and 12 during water quality sampling events in the absence of pile driving within the cluster. Both pumps turned on and operated during the sampling events. Maximum vibration measurements for Well 11 were 0.016 mm/s and this pump was located within the residence approximately 40 m from the well. Maximum vibration measurements for Well 12 were 0.896 mm/s and this pump was mounted on the well casing. During pile driving on August 23, 2017, the maximum vibration measurement of the Well 12 casing was 2.4 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Data not available for Piles 1, 5 and 6 at Well 11 on August 23, 2017 due to battery failure in monitoring equipment. Battery was subsequently replaced. Driving/restriking of some piles occured in relatively rapid succession and, therefore, in some cases the vibration measurement data for the 10 minute periods of analysis are applicable to multiple piles. Where total driving duration between till/rock start and end times noted above is not representative, actual driving duration is shown in parentheses in minutes and seconds: 2(6:42), 3(5:13), 7(8:45), 12(7:08), 15(1:20), 17(1:42). Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location:

T4

Vibration Measurements at Turbine Site					Vibration N	leasurement	s at Wells	
	Pile Driving Times and Dates				Daily Maximum Particle Velocity	Particle	Velocity (mr	n/s) ^{c, d}
Pile No.:	Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 11	Well 12	No Pump ^e
1 8/	25/2017 8:00	8/25/2017 8:08	8/25/2017 8:09	23.9	2.54	0.004	0.006	
2 8/	25/2017 8:30	8/25/2017 9:15	8/25/2017 9:16	25.6	2.54	0.006	2.335	0.008
3 8/	25/2017 9:03	8/25/2017 9:09	8/25/2017 9:10	26.6	2.54	0.007	2.335	0.008
4 8/	25/2017 8:47	8/25/2017 8:56	8/25/2017 8:57	27.0	2.54	0.005	0.011	
5 8/	25/2017 8:15	8/25/2017 8:22	8/25/2017 8:23	26.6	2.54	0.028	0.018	
6 8/	24/2017 13:01	8/24/2017 13:10	8/24/2017 13:11	25.6	4.32	0.011	0.056	
7 8/	24/2017 9:56	8/24/2017 10:04	8/24/2017 10:51	23.9	4.32	0.018	1.511	0.024
8 8/	24/2017 13:19	8/24/2017 15:13	8/24/2017 15:14	21.6	4.32	0.024	1.777	0.014
98/	24/2017 10:56	8/24/2017 11:04	8/24/2017 11:04	19.0	4.32	0.006	0.004	
10 8/	24/2017 13:35	8/24/2017 13:45	8/24/2017 13:45	16.1	4.32	0.006	0.018	
11 8/	24/2017 11:10	8/24/2017 11:18	8/24/2017 11:18	13.2	4.32	0.013	0.026	
12 8/	24/2017 13:52	8/24/2017 15:09	8/24/2017 15:10	11.0	4.32	0.024	1.777	0.014
13 8/	24/2017 11:23	8/24/2017 11:32	8/24/2017 11:33	10.1	4.32	0.009	0.009	
14 8/	24/2017 14:07	8/24/2017 14:17	8/24/2017 14:17	11.0	4.32	0.007	0.006	
15 8/	24/2017 11:38	8/24/2017 15:03	8/24/2017 15:04	13.2	4.32	0.009	1.374	0.028
16 8/	24/2017 14:24	8/24/2017 14:33	8/24/2017 15:01	16.1	4.32	0.009	1.374	0.028
17 8/	24/2017 12:46	8/24/2017 14:55	8/24/2017 14:56	19.0	4.32	0.030	1.374	0.028
18 8/	24/2017 14:40	8/24/2017 14:52	8/24/2017 14:52	21.6	4.32	0.030	0.029	

Well Information				
Well No.: 11		Well No.:	12	
Municipal Address:		Municipal Address:	: · · ·	
Distance from Turbine Centre:	1424 m	Distance from Turb	ine Centre:	1072 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Vibration measurements were undertaken on August 17, 2017 at Wells 11 and 12 during water quality sampling events in the absence of pile driving within the cluster. Both pumps turned on and operated during the sampling events. Maximum vibration measurements for Well 11 were 0.016 mm/s and this pump was located within the residence approximately 40 m from the well. Maximum vibration measurements for Well 12 were 0.896 mm/s and this pump was located within the residence approximately 40 m from the well. Maximum vibration measurements for Well 12 were 0.896 mm/s and this pump was mounted on the well casing. During pile driving on August 24, 2017, the maximum vibration measurement of the Well 12 casing was 1.777 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Note that driving of some piles was paused while the tip was in the upper soil deposits and subsequently driven to the glacial till/rock later in the day. In these instances, the hard driving conditions for different piles occured in relatively rapid succession and, therefore, the vibration measurement data for the 10 minute periods of analysis are applicable to multiple piles. Where total driving duration between till/rock start and end times noted above is not representative, actual driving duration is shown in parentheses in minutes and seconds: 2(7:33), 7(1:32), 8(0:53), 12(1:10), 15(1:15), 16(1:02), 17(1:31). Total driving durations derived from start and end times noted above include labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location: T6

	Vibration Measurements at Turbine Site					Vibration Measu	rements at Wells
	Pile Driv	ing Times and Date	25		Daily Maximum Particle Velocity	Particle Velo	city (mm/s) ^{c, d}
Pile No.:	Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 7	Well 8
1 7/3	1/2017 11:25	7/31/2017 11:28	7/31/2017 11:32	27.0	4.57	0.068	0.049
2 7/3	1/2017 12:20	7/31/2017 12:26	7/31/2017 12:28	26.6	4.57	0.044	0.032
3 7/3	1/2017 12:37	7/31/2017 12:41	7/31/2017 12:46	25.6	4.57	0.018	0.028
4 7/3	1/2017 13:35	7/31/2017 13:40	7/31/2017 13:46	23.9	4.57	0.066	0.011
5 7/3	1/2017 13:18	7/31/2017 13:23	7/31/2017 13:28	21.6	4.57	0.017	0.010
6 7/3	1/2017 12:59	7/31/2017 13:05	7/31/2017 13:07	19.0	4.57	0.012	0.033
7 7/3	1/2017 7:33	7/31/2017 7:37	7/31/2017 7:42	16.1	4.57	0.050	0.050
8 7/3	1/2017 7:53	7/31/2017 7:56	7/31/2017 8:03	13.2	4.57	0.127	0.070
9 7/3	1/2017 8:14	7/31/2017 8:18	7/31/2017 8:22	11.0	4.57	0.051	0.015
10 7/3	1/2017 8:31	7/31/2017 8:37	7/31/2017 8:41	10.1	4.57	0.025	0.058
11 7/3	1/2017 8:48	7/31/2017 8:51	7/31/2017 8:53	11.0	4.57	0.035	0.012
12 7/3	1/2017 9:02	7/31/2017 9:07	7/31/2017 9:12	13.2	4.57	0.058	0.023
13 7/3	1/2017 9:21	7/31/2017 9:25	7/31/2017 9:33	16.1	4.57	0.118	0.005
14 7/3	1/2017 9:42	7/31/2017 9:47	7/31/2017 9:50	19.0	4.57	0.082	0.007
15 7/3	1/2017 10:21	7/31/2017 10:24	7/31/2017 10:29	21.6	4.57	0.039	0.032
16 7/3	1/2017 10:36	7/31/2017 10:40	7/31/2017 10:43	23.9	4.57	0.010	0.014
17 7/3	1/2017 10:51	7/31/2017 10:54	7/31/2017 10:58	25.6	4.57	0.040	0.057
18 7/3	1/2017 11:09	7/31/2017 11:13	7/31/2017 11:17	26.6	4.57	0.024	0.071

Well Information		
Well No.: 7		Well No.: 8
Municipal Address:		Municipal Address:
Distance from Turbine Centre:	1049 m	Distance from Turbine Centre: 872 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Well monitoring undertaken during periods of time on these same days when pile driving was not occuring measured maximum particle velocities of as much as 0.37 mm/s (Well 7). Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction.

Turbine Location: T7

	Vibration Measurements at Turbine Site					Vibration Measurements at Wells	
	Pile Drivi	ng Times and Date	25		Daily Maximum Particle Velocity	Particle Velo	city (mm/s) ^{c, d}
Pile No.:	Start ^ª	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 7	Well 8
1 7,	/27/2017 17:57	7/27/2017 18:03	7/27/2017 18:04	27.0	5.97	0.030	0.011
2 7,	/27/2017 18:31	7/27/2017 18:36	7/27/2017 18:36	26.6	5.97	0.063	0.013
3 7,	/28/2017 8:11	7/28/2017 8:16	7/28/2017 8:16	25.6	2.16	0.019	0.022
4 7,	/28/2017 8:37	7/28/2017 8:43	7/28/2017 8:44	23.9	2.16	0.035	0.045
5 7,	/27/2017 18:11	7/27/2017 18:17	7/27/2017 18:18	21.6	5.97	0.017	0.012
67,	/27/2017 15:27	7/27/2017 15:32	7/27/2017 15:33	19.0	5.97	0.019	0.028
7 7,	/27/2017 15:10	7/27/2017 15:15	7/27/2017 15:16	16.1	5.97	0.026	0.028
8 7,	/27/2017 14:30	7/27/2017 14:36	7/27/2017 14:37	13.2	5.97	0.017	0.027
9 7,	/27/2017 14:10	7/27/2017 14:16	7/27/2017 14:18	11.0	5.97	0.011	0.031
10 7,	/27/2017 13:55	7/27/2017 14:00	7/27/2017 14:01	10.1	5.97	0.030	0.012
11 7,	/27/2017 13:42	7/27/2017 13:46	7/27/2017 13:47	11.0	5.97	0.025	0.042
12 7/	/27/2017 13:09	7/27/2017 13:13	7/27/2017 13:23	13.2	5.97	0.019	0.035
13 7/	/27/2017 12:21	7/27/2017 12:34	7/27/2017 12:53	16.1	5.97	0.030	0.049
14 7,	/27/2017 15:42	7/27/2017 15:51	7/27/2017 15:54	19.0	5.97	0.026	0.039
15 7,	/27/2017 16:06	7/27/2017 16:12	7/27/2017 16:13	21.6	5.97	0.032	0.021
16 7,	/27/2017 16:34	7/27/2017 16:44	7/27/2017 16:45	23.9	5.97	0.010	0.066
17 7,	/27/2017 16:55	7/27/2017 17:01	7/27/2017 17:02	25.6	5.97	0.069	0.030
18 7,	/27/2017 17:17	7/27/2017 17:25	7/27/2017 17:26	26.6	5.97	0.027	0.060

Well Information			
Well No.: 7		Well No.: 8	
Municipal Address:		Municipal Address:	
Distance from Turbine Cent	tre: 1354 m	Distance from Turbine Centre	: 2883 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Well monitoring undertaken during periods of time on these same days when pile driving was not occuring measured maximum particle velocities of as much as 0.073 mm/s. Total driving duration between till/rock start and end times noted above for Pile 13 is not representative and actual driving duration was 00:1:45 due to pauses in actual hammering. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction.

Turbine Location: T12

Vibration Measurements at Turbine Site				Vibration Measurements at Wells				
					Daily Maximum			
	Pile Drivi	ng Times and Date	es		Particle Velocity Particle Velocity (mm/			m/s) ^{c, d}
Pile No.:	Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 5	Well 6	No Pump ^e
1 7	/5/2017 12:33	7/5/2017 12:46	7/5/2017 12:47	27.5	5.97	0.008	0.044	See Notes
2 7	/5/2017 15:47	7/5/2017 16:01	7/5/2017 16:01	27.8	5.97	0.001	0.106	
3 7	/6/2017 8:08	7/6/2017 8:19	7/6/2017 8:20	27.5	4.32	0.010	0.775	
4 7	/6/2017 7:47	7/6/2017 7:58	7/6/2017 7:59	26.4	4.32	0.002	0.048	
5 7	/5/2017 12:57	7/5/2017 13:26	7/5/2017 13:27	24.7	5.97	0.002	0.729	
6 7	/5/2017 14:11	7/5/2017 14:22	7/5/2017 14:23	22.5	5.97	0.002	0.298	
7 7	/4/2017 14:48	7/4/2017 14:57	7/4/2017 14:58	19.8	5.97	0.002	0.026	
8 7	/5/2017 11:38	7/5/2017 11:49	7/5/2017 11:50	16.8	5.97	0.008	0.030	
9 7	/4/2017 9:26	7/4/2017 9:58	7/4/2017 10:00	14.0	9.91	0.011	0.246	0.014
10 7	/5/2017 11:11	7/5/2017 11:25	7/5/2017 11:26	11.8	5.97	0.002	0.047	0.014
11 6	/30/2017 12:03	6/30/2017 13:47	6/30/2017 13:54	11.0	11.20	0.004	0.755	
12 7	/4/2017 15:15	7/4/2017 15:25	7/4/2017 15:25	11.8	9.91	0.002	0.179	
13 7	/4/2017 11:22	7/4/2017 11:33	7/4/2017 11:34	14.0	9.91	0.002	0.066	
14 7	/4/2017 15:47	7/4/2017 15:58	7/4/2017 15:58	16.8	9.91	0.069	0.037	
15 7	/4/2017 11:55	7/4/2017 12:06	7/4/2017 12:07	19.8	9.91	0.003	0.023	
16 7	/4/2017 16:35	7/4/2017 16:47	7/4/2017 16:47	22.5	9.91	0.004	0.155	
17 7	/4/2017 13:01	7/4/2017 13:14	7/4/2017 13:20	24.7	9.91	0.007	0.085	
18 7	/4/2017 15:08	7/4/2017 15:27	7/4/2017 15:28	26.4	9.91	0.002	0.729	
Restrikes								
7 7	/5/2017 8:42	7/5/2017 8:42	7/5/2017 8:42	19.8	5.97	0.007	0.647	0.027
9 7	/5/2017 8:47	7/5/2017 8:47	7/5/2017 8:48	14.0	5.97	0.007	0.634	0.027
11 7	/5/2017 8:51	7/5/2017 8:51	7/5/2017 8:52	11.0	5.97	0.007	0.634	0.032
12 7	/5/2017 8:57	7/5/2017 8:57	7/5/2017 8:58	11.8	5.97	0.003	0.624	
13 7	/5/2017 9:02	7/5/2017 9:02	7/5/2017 9:03	14.0	5.97	0.008	0.662	
14 7	/5/2017 9:09	7/5/2017 9:09	7/5/2017 9:10	16.8	5.97	0.008	0.624	
15 7	/5/2017 9:13	7/5/2017 9:13	7/5/2017 9:14	19.8	5.97	0.003	0.546	0.057
16 7	/5/2017 9:17	7/5/2017 9:17	7/5/2017 9:19	22.5	5.97	0.002	0.546	0.057
17 7	/5/2017 9:22	7/5/2017 9:22	7/5/2017 9:23	26.4	5.97	0.002	0.546	0.057
Well Inforn	nation							
Well No.:	5				Well No.: 6			
Municipal Ac	dress:				Municipal Address:			
Distance from	m Turbine Centre	: 334	6 m		Distance from Turbine	Centre:	3368	m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". On July 5, 2017, approximately 1 minute after pile driving stopped for Pile 1, the well monitoring personnel at Well 6 observed a loaded tractor/trailer dump truck drive by the well at 54 m distance and ground vibrations were sensed. At this time, the resident was also hammering on equipment within a nearby (120 m) shed during which it sounded as though a heavy sledge was being used with multiple recoil/hammer falls after each main strike. Vibrations associated with these activities (not separable) registered as 2.8 mm/s, consistent with the perception of vibrations by the well monitoring personnel. Monitoring of deliberate pump operation at Well 6 on July 13, 2017, during a period when no pile driving was occuring, measured maximum particle velocities of 0.08 to 0.8 mm/s. Driving/restriking of some piles occured in relatively rapid succession and, therefore, in some cases the vibration measurement data for the 10 minute periods of analysis are applicable to multiple piles. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time. The driving duration for Pile 11 on June 30, 2017 were unusually long since a small driving hammer was used for this pile. The total duration of driving on till/rock was 7 minutes for this pile.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location: T14

	Vibration Measurements at Turbine Site				Daily Maximum	Vibration Measurements at Wells			
	Pile Drivi	ng Times and Date	s		Particle Velocity	Particle	Particle Velocity (mm/s) ^{c, d}		
Pile No.:	Start ^ª	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 13	Well 14	No Pump ^e	
1 9/	11/2017 16:01	9/11/2017 16:06	9/11/2017 16:09	18.9	4.95	0.020	0.206		
2 9/	11/2017 16:24	9/11/2017 16:29	9/11/2017 16:32	21.0	4.95	0.010	0.056		
3 9/	11/2017 15:48	9/11/2017 15:54	9/11/2017 15:56	22.6	4.95	0.017	0.132		
49/	11/2017 15:33	9/11/2017 15:39	9/11/2017 15:43	23.6	4.95	0.012	0.190		
5 9/	11/2017 15:19	9/11/2017 15:24	9/11/2017 15:26	24.0	4.95	0.006	0.064		
69/	11/2017 15:04	9/11/2017 15:10	9/11/2017 15:13	23.6	4.95	0.005	0.221		
7 9/	11/2017 12:33	9/11/2017 12:39	9/11/2017 12:44	22.6	4.95	0.007	0.083		
89/	11/2017 12:17	9/11/2017 12:25	9/11/2017 12:27	21.0	4.95	0.005	0.338		
9 9/	11/2017 11:53	9/11/2017 11:59	9/11/2017 12:02	18.9	4.95	0.114	0.675		
10 9/	11/2017 11:36	9/11/2017 11:43	9/11/2017 11:45	16.3	4.95	0.013	0.240		
11 9/	11/2017 11:20	9/11/2017 11:25	9/11/2017 11:28	13.5	4.95	0.013	0.168		
12 9/	11/2017 10:24	9/11/2017 10:30	9/11/2017 10:34	10.6	4.95	0.428	0.077	0.011	
13 9/	11/2017 10:07	9/11/2017 10:14	9/11/2017 10:16	8.1	4.95	0.543	0.141	0.008	
14 9/	11/2017 9:50	9/11/2017 9:56	9/11/2017 10:01	7.1	4.95	0.021	0.102		
15 9/	11/2017 9:34	9/11/2017 9:39	9/11/2017 9:42	8.1	4.95	0.004	0.014		
16 9/	11/2017 9:17	9/11/2017 9:24	9/11/2017 9:28	10.6	4.95	0.318	0.021	0.007	
17 9/	11/2017 8:57	9/11/2017 9:03	9/11/2017 9:05	13.5	4.95	0.026	0.070		
18 9/	11/2017 8:39	9/11/2017 8:47	9/11/2017 8:49	16.3	4.95	0.007	0.018		

Restrikes

Well Information			
Well No.: 13		Well No.: 14	
Municipal Address:		Municipal Address:	
Distance from Turbine Centre:	841 m	Distance from Turbine Centre:	580 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time. Well 13 pump vibrations dominated data for periods of 1 to 5 minutes. "No pump" data column indicates vibration velocities exclusive of pump operating times for Well 13. Wells 13 and 14 are located approximately 87 m and 13 m from the centre line of Union Line, respectively. Vibration velocities noted above for both wells reflect maximum values induced by transient sources other than pile driving. Evaluation of acceleration time histories concluded that other transient vibrations occurring before, during and after pile driving times dominated all measurements. Data for two 10-minute time periods during which no pile driving occurred were evaluated with start times of 10:47 and 14:27 for Well 13 and and 10:48 and 14:36 for Well 14 indicated a maximum velocity of 0.079 mm/s. Additional evaluation of pump operations and other transient sources for both wells is pending.

Footnotes: a) start and stop of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location: T20

Vibration Measurements at Turbine Site				Vibration Measurements at Wells				
					Daily Maximum			h ac d
	Pile Driv	ing Times and Date	S		Particle Velocity	Particl	e Velocity (m	ım/s) ^{°,} "
Pile No.:	Start ^ª	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s)⁵	Well 11	Well 12	No Pump ^e
1 8/	/30/2017 15:30	8/30/2017 15:33	8/30/2017 15:54	25.0	5.33	0.016	NA ^e	
2 8/	/30/2017 18:17	8/30/2017 18:21	8/30/2017 18:29	26.0	5.33	0.005	0.008	
3 8/	/30/2017 18:33	8/30/2017 18:38	8/30/2017 18:45	26.3	5.33	0.003	0.004	
4 8/	/30/2017 17:55	8/30/2017 17:59	8/30/2017 18:10	26.0	5.33	0.004	0.005	
5 8/	/30/2017 17:38	8/30/2017 17:37	8/30/2017 17:49	25.0	5.33	0.004	0.855	0.022
6 8/	/30/2017 17:14	8/30/2017 17:19	8/30/2017 17:31	23.3	5.33	0.004	NA ^e	
78/	/30/2017 16:54	8/30/2017 16:56	8/30/2017 17:09	21.0	5.33	0.003	NA ^e	
8 8/	/30/2017 16:19	8/30/2017 16:24	8/30/2017 16:53	18.3	5.33	0.046	NA ^e	
98/	/30/2017 16:01	8/30/2017 16:05	8/30/2017 16:12	15.4	5.33	0.005	NA ^e	
10 8/	/30/2017 11:34	8/30/2017 11:38	8/30/2017 11:50	12.5	5.33	0.005	0.016	
11 8/	/30/2017 10:26	8/30/2017 10:29	8/30/2017 10:40	9.1	5.33	0.018	0.013	
12 8/	/30/2017 9:58	8/30/2017 10:02	8/30/2017 10:16	10.1	5.33	0.011	0.014	
13 8/	/30/2017 9:49	8/30/2017 9:44	8/30/2017 9:50	12.5	5.33	0.010	0.014	
14 8/	/30/2017 12:02	8/30/2017 12:04	8/30/2017 12:22	15.4	5.33	0.028	0.008	
15 8/	/30/2017 12:36	8/30/2017 12:39	8/30/2017 12:54	18.3	5.33	0.023	0.006	
16 8/	/30/2017 13:01	8/30/2017 13:05	8/30/2017 13:20	21.0	5.33	0.004	0.004	
17 8/	/30/2017 14:26	8/30/2017 14:29	8/30/2017 14:41	23.3	5.33	0.004	0.006	
18 8/	/30/2017 14:52	8/30/2017 14:56	8/30/2017 15:24	25.0	5.33	0.003	0.025	
Restrikes								
13 8/	/30/2017 13:23	8/30/2017 13:23	8/30/2017 13:35	12.5	5.33	0.008	0.008	
Well Inform	ation							
Well No.:	1	1			Well No.: 12			
Municipal Ad	dress:				Municipal Address:			
Distance fron	n Turbine Centre:	380	0 m		Distance from Turbine C	entre:	3962	m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Vibration measurements were undertaken on August 17, 2017 at Wells 11 and 12 during water quality sampling events in the absence of pile driving within the cluster. Both pumps turned on and operated during the sampling events. Maximum vibration measurements for Well 11 were 0.016 mm/s and this pump was located within the residence approximately 40 m from the well. Maximum vibration measurements for Well 12 were 0.896 mm/s and the pump was mounted on the well casing. During pile driving on August 23, 2017, the maximum vibration measurement of the Well 12 casing was 2.4 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Data not available for Piles 1, 6, 7, 8 and 9 at Well 12 on August 30, 2017 due to battery failure in monitoring equipment. Battery was subsequently replaced. Total driving duration between till/rock start and end times noted above for Pile 1 is not representative and actual driving duration was 00:7:40 due to pauses in actual hammering. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location: T21

	Vibration Measurements at Turbine Site					Vibration Measurements at Wells		
	Pile Driv	ving Times and Date	s		Daily Maximum Particle Velocity	Particl	e Velocity (m	im/s) ^{c, d}
Pile No.:	Start ^ª	Rock/Till	End [®]	Geophone Dist. (m)	(mm/s) ^b	Well 11	Well 12	No Pump ^e
1 8/2	29/2017 12:01	8/29/2017 12:04	8/29/2017 12:14	23.7	2.79	NA ^e	0.008	
2 8/2	29/2017 1:27	8/29/2017 1:30	8/29/2017 1:39	25.4	2.79	0.003	0.006	
3 8/2	29/2017 1:44	8/29/2017 1:47	8/29/2017 1:54	26.4	2.79	0.009	0.006	
4 8/2	29/2017 11:20	8/29/2017 11:23	8/29/2017 11:32	26.8	2.79	0.003	0.013	
5 8/2	29/2017 11:05	8/29/2017 11:08	8/29/2017 11:13	26.4	2.79	NA ^e	0.013	
6 8/2	29/2017 8:48	8/29/2017 8:51	8/29/2017 8:59	25.4	2.79	NA ^e	0.026	
7 8/2	29/2017 8:28	8/29/2017 8:33	8/29/2017 8:40	23.7	2.79	NA ^e	0.005	
8 8/2	29/2017 8:07	8/29/2017 8:11	8/29/2017 8:19	21.5	2.79	NA ^e	0.003	
9 8/2	29/2017 7:51	8/29/2017 7:54	8/29/2017 7:59	18.8	2.79	0.004	0.004	
10 8/2	28/2017 16:40	8/28/2017 16:44	8/28/2017 16:53	15.9	3.30	0.015	0.071	
11 8/2	28/2017 16:11	8/28/2017 16:14	8/28/2017 16:27	13.0	3.30	0.007	1.551	0.039
12 8/2	28/2017 15:51	8/28/2017 15:58	8/28/2017 16:05	10.8	3.30	0.005	0.007	
13 8/2	28/2017 14:27	8/28/2017 14:30	8/28/2017 14:37	9.9	3.30	0.003	0.005	
14 8/2	28/2017 14:10	8/28/2017 14:13	8/28/2017 14:21	10.8	3.30	0.006	0.005	
15 8/2	28/2017 13:45	8/28/2017 13:48	8/28/2017 13:58	13.0	3.30	0.008	0.013	
16 8/2	28/2017 13:21	8/28/2017 13:24	8/28/2017 13:37	15.9	3.30	0.006	0.011	
17 8/2	28/2017 13:01	8/28/2017 13:05	8/28/2017 13:13	18.8	3.30	0.011	0.010	
18 8/2	29/2017 11:44	8/29/2017 11:47	8/29/2017 11:54	21.5	2.79	NA ^e	0.031	

Restrikes

Well Information			
Well No.: 11		Well No.: 12	
Municipal Address:		Municipal Address:	
Distance from Turbine Centre:	3960 m	Distance from Turbine Centre:	4161 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Vibration measurements were undertaken on August 17, 2017 at Wells 11 and 12 during water quality sampling events in the absence of pile driving within the cluster. Both pumps turned on and operated during the sampling events. Maximum vibration measurement for Well 11 was 0.016 mm/s and this pump was located within the residence approximately 40 m from the well. Maximum vibration measurement for Well 12 was 0.896 mm/s and the pump was mounted on the well casing. During pile driving on August 23, 2017, the maximum vibration measurement of the Well 12 casing was 2.4 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Data not available for Piles 1, 5, 6, 7, 8 and 18 at Well 11 on August 29, 2017 due to battery failure in monitoring equipment. Battery was subsequently replaced. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location: T28

Vibration Measurements at Turbine Site				Vibration Measurements at Wells				
					Daily Maximum			c. d
	Pile Drivi	ing Times and Date	es		Particle Velocity	Particl	e Velocity (m	ım/s) ^{e, a}
Pile No.:	Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s)⁵	Well 9	Well 10	No Pump ^e
1 8/3	15/2017 14:33	8/15/2017 14:41	8/15/2017 14:43	21.6	3.17	0.061	0.020	
2 8/3	15/2017 14:53	8/15/2017 15:04	8/15/2017 15:06	23.9	3.17	0.019	0.036	
3 8/3	15/2017 15:31	8/15/2017 15:42	8/15/2017 15:44	25.6	3.17	0.111	0.805	0.019
4 8/	15/2017 13:23	8/15/2017 13:37	8/15/2017 13:39	26.6	3.17	0.022	0.804	0.100
5 8/3	15/2017 12:10	8/15/2017 12:22	8/15/2017 12:24	27.0	3.17	0.108	0.158	
6 8/3	15/2017 11:46	8/15/2017 11:59	8/15/2017 12:00	26.6	3.17	0.012	0.095	
7 8/3	15/2017 9:56	8/15/2017 10:08	8/15/2017 10:11	25.6	3.17	0.027	0.052	
8 8/3	15/2017 9:16	8/15/2017 9:34	8/15/2017 9:36	23.9	3.17	0.040	0.009	
9 8/3	15/2017 8:51	8/15/2017 9:03	8/15/2017 9:04	21.6	3.17	0.046	0.015	
10 8/3	15/2017 8:18	8/15/2017 8:33	8/15/2017 8:35	19.0	3.17	NA ^e	0.750	0.026
11 8/	15/2017 7:45	8/15/2017 7:58	8/15/2017 8:02	16.1	3.17	NA ^e	0.007	
12 8/	11/2017 13:27	8/11/2017 14:45	8/11/2017 14:46	13.2	5.59	0.812	0.014	
13 8/3	11/2017 12:36	8/11/2017 12:48	8/11/2017 12:50	11.0	5.59	0.054	0.006	
14 8/3	11/2017 12:13	8/11/2017 12:25	8/11/2017 12:27	10.1	5.59	0.055	0.112	
15 8/3	11/2017 11:19	8/11/2017 11:28	8/11/2017 11:30	11.0	5.59	0.244	0.015	
16 8/3	11/2017 11:48	8/11/2017 12:02	8/11/2017 12:03	13.2	5.59	0.183	0.007	
17 8/	11/2017 10:22	8/11/2017 11:06	8/11/2017 11:07	16.1	5.59	0.686	0.034	
18 8/3	15/2017 13:56	8/15/2017 14:09	8/15/2017 14:10	19.0	3.17	0.015	0.705	0.052
Restrikes								
	16/2017 8:19	8/16/2017 8:19	8/16/2017 8:23	23.9	2.65	0.017	0.029	

Well Information				
Well No.:	9		Well No.: 10	
Municipal Address:			Municipal Address:	
Distance from Turbine Centre: 2568 m		e: 2568 m	Distance from Turbine Cer	ntre: 1769 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Data for Well 9 was not available for August 15, 2017 during driving of piles 10 and 11 while awaiting site security changes implemented following an incident at the Well 9 property the evening of August 14, 2017. Highlighted values for Well 9 on August 11, 2017 are higher than and inconsistent with other measurements during pile driving at the T28 site. On August 11, 2017, construction activities were underway along the entrance road to T32, located as close as about 100 m from Well 9. These activities included: hammering, movements of large construction equipment (e.g., loaders, dump trucks, excavators, "stone throwers"), and equipment travelled on access road site without construction mats, equipment operating on T32 access resulted in "pounding" sounds. The Well 9 area is also subject to heavy passing traffic on Countryview Line (74 m from well) including: fuel trucks, loaded dump trucks, large transport trucks, a bus, and cranes/boom trucks among other vehicles. Further analysis of Well 9 vibration data was undertaken for 10 minute periods on August 11, 2017 during which pile driving was not occuring between 08:32:00 and 08:42:00, 09:12:00 and 09:22:00, 11:22:00 and 11:32:00, and 13:48:00 and 13:58:00. During these periods the maximum velocities (regardless of direction) of the Well 9 casing ranged from 0.011 to 1.2 mm/s. Data shown for Well 9 during driving of Piles 12, 15, 16 and 17 (highlighted) are considered unrepresentative of pile driving and associated with other vibration sources. The piston pump for Well 9 is within the barn approximately 4 to 5 m from the well location. When the Well 9 pump was deliberately operated on September 8, 2017, in the absence of pile driving, well casing velocities were up to 0.04 mm/s. When the pump for Well 10 was operating, well casing vibrations of as much as 1.25 mm/s were measured. "No pump" data is provided to indicate measurements exclusive of data consistent with typical pump operations. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Footnotes: a) start and end of pile driving are start and stop times for active hammering; b) values shown are maximum daily values regardless of direction; c) preliminary values subject to further data review/analysis; d) values shown are based on fast Fourier transform analyses of consecutive 1 second intervals for a total period of 10 minutes during pile driving on till/rock (600 seconds) and represent the maximum of the 1 second interval peak velocity values during these periods regardless of measurement direction; e) see monitoring notes above.

Turbine Location: T30

		Vibration F	Measurements at T	urbine Site			urements at We	ells
					Daily Maximum	Particle Velocit	y (mm/s) ^{c, d}	
	Pile Driv	ing Times and Date	es		Particle Velocity			
Pile No.:	Start ^ª	Rock/Till	End ^ª	Geophone Dist. (m)	(mm/s)⁵	Well 9	Well 10	No Pump ^e
1 8/	4/2017 14:24	8/4/2017 14:42	8/4/2017 15:01	23.0	4.70	0.054	0.815	0.014
1A 8/	9/2017 9:30	8/9/2017 9:51	8/9/2017 9:58	23.5	2.41	0.080	0.935	0.027
2 8/	8/2017 8:42	8/8/2017 8:52	8/8/2017 9:03	24.6	3.17	0.061	0.049	
3 8/	8/2017 9:17	8/8/2017 9:25	8/8/2017 9:35	25.6	3.17	0.041	0.883	0.009
48/	8/2017 7:49	8/8/2017 8:02	8/8/2017 8:10	26.0	3.17	0.035	1.251	0.036
5 8/	4/2017 16:24	8/4/2017 16:32	8/4/2017 16:40	25.6	4.70	0.061	0.007	
68/	4/2017 15:57	8/4/2017 16:03	8/4/2017 16:11	24.6	4.70	0.059	0.003	
78/	4/2017 15:24	8/4/2017 15:34	8/4/2017 15:39	23.0	4.70	0.082	0.028	
8 8/	4/2017 10:57	8/4/2017 11:03	8/4/2017 11:06	20.8	4.70	0.032	0.540	0.033
98/	3/2017 13:33	8/3/2017 13:38	8/3/2017 13:46	18.1	5.33	0.076	0.088	
10 8/	3/2017 13:07	8/3/2017 13:16	8/3/2017 13:20	15.2	5.33	0.088	0.014	
11 8/	3/2017 11:46	8/3/2017 11:52	8/3/2017 11:56	9.1	5.33	0.029	0.007	
12 8/	3/2017 11:25	8/3/2017 11:29	8/3/2017 11:34	10.1	5.33	0.066	0.005	
13 8/	3/2017 10:44	8/3/2017 10:53	8/3/2017 10:59	12.4	5.33	0.059	0.876	0.005
14 8/	3/2017 14:04	8/3/2017 14:11	8/3/2017 14:19	15.2	5.33	0.061	0.023	
15 8/	3/2017 14:34	8/3/2017 14:47	8/3/2017 14:50	18.1	5.33	0.032	0.005	
16 8/	4/2017 8:50	8/4/2017 8:55	8/4/2017 9:08	20.8	4.70	0.048	0.032	
17 8/	4/2017 9:32	8/4/2017 9:38	8/4/2017 9:43	23.0	4.70	0.051	0.002	
18 8/	4/2017 10:17	8/4/2017 10:33	8/4/2017 10:36	24.6	4.70	0.024	0.004	
Restrikes								
15C 8/	4/2017 8:15	8/4/2017 8:15	8/4/2017 8:21	18.1	4.70	0.044	0.022	
	8/2017 15:19	8/8/2017 15:19	8/8/2017 15:25	23.0	3.17	0.080	0.006	
-	8/2017 8:15	8/8/2017 8:15	8/8/2017 8:20	25.6	3.17	0.056	1.016	0.006
	8/2017 9:40	8/8/2017 9:40	8/8/2017 9:41	24.6	3.17	0.041	1.116	0.146

Well Information		
Well No.: 9		Well No.: 10
Municipal Address:		Municipal Address:
Distance from Turbine Centre:	1808 m	Distance from Turbine Centre: 1385 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Piles noted with "A" represent piles installed to replace similarly-numbered piles. After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes" (where applicable). Piles noted with "C" were those that were started on one day and continued on a separate day; therefore, additional well monitoring data is presented for the time periods during which piling continued on till/rock. When the pump for Well 10 was operating, well casing vibrations of as much as 1.25 mm/s were measured. "No pump" data is provided to indicate measurements exclusive of data consistent with typical pump operations. Total driving duration between till/rock start and end times noted above for Pile 1 is not representative and actual driving duration was 00:11:50 due to pauses in actual hammering. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location: T31

	Vibration N	leasurements at Tu	urbine Site		Vibration Meas	urements at Wells
				Daily Maximum	Particle Velo	ocity (mm/s) ^{c, d}
Pile Driv	ing Times and Date	es		Particle Velocity		
Pile No.: Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 7	Well 8
1 7/17/2017 13:18	7/17/2017 13:24	7/17/2017 13:26	8.1	2.92	0.042	0.028
2 7/17/2017 14:46	7/17/2017 14:52	7/17/2017 14:54	9.1	2.92	0.038	0.034
3 7/18/2017 7:39	7/18/2017 7:47	7/18/2017 7:49	11.4	4.19	0.016	0.075
4 7/18/2017 8:03	7/18/2017 8:10	7/18/2017 8:13	14.3	4.19	0.023	0.005
5 7/17/2017 12:56	7/17/2017 13:01	7/17/2017 13:05	17.2	2.92	0.020	0.071
6 7/17/2017 11:49	7/17/2017 11:53	7/17/2017 11:54	19.8	2.92	0.100	0.099
7 7/17/2017 11:25	7/17/2017 11:30	7/17/2017 11:35	22.0	2.92	0.014	0.028
8 7/17/2017 10:25	7/17/2017 10:31	7/17/2017 10:36	23.6	2.92	0.044	0.028
9 7/17/2017 8:03	7/17/2017 8:09	7/17/2017 8:30	24.6	2.92	0.011	0.041
10 NA	NA	NA	25.0		NA	NA
11 7/14/2017 16:18	7/14/2017 16:25	7/14/2017 16:28	24.6	5.46	0.041	NA
12 7/13/2017 15:38	7/13/2017 15:44	7/13/2017 15:45	23.6	5.08	0.037	0.034
13 7/13/2017 16:12	7/13/2017 16:26	7/13/2017 16:30	24.6	5.08	0.012	0.015
14 7/14/2017 8:22	7/14/2017 8:47	7/14/2017 8:48	25.0	5.46	0.072	0.023
15 7/13/2017 16:56	7/13/2017 17:06	7/13/2017 17:08	24.6	5.08	0.156	0.020
16 7/14/2017 11:18	7/14/2017 11:23	7/14/2017 11:29	23.6	5.46	0.044	0.034
17 7/14/2017 11:40	7/14/2017 11:48	7/14/2017 11:51	22.0	5.46	0.074	0.075
18 7/14/2017 12:10	7/14/2017 12:16	7/14/2017 12:21	19.8	5.46	0.050	0.041

Well Information			
Well No.: 7		Well No.: 8	
Municipal Address:		Municipal Address:	
Distance from Turbine Centre:	636 m	Distance from Turbine Centre: 2497 m	

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: On July 14, 2017 at about 14:00, Golder was informed that piling operations at T31 were concluded. At 15:45 instruments were therefore turned off at Well 8 in preparation for removal for the day. Piling resumed at approximately 16:15. As a result, data was not captured for Wells 7 or 8 when driving Pile 10 and Well 8 when driving Pile 11. Well monitoring undertaken during periods of time when pile driving was not occuring measured maximum particle velocities of as much as 0.37 mm/s at Well 7. Total driving duration between till/rock start and end times noted above for Pile 9 is not representative and actual driving duration was 00:04:00 due to pauses in actual hammering. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location:

T32

Daily Maximum Pile Driving Times and Dates Particle Velocity Particle Veloc Pile No.: Start ^a Rock/Till End ^a Geophone Dist. (m) (mm/s) ^b Well 9 Well	10 No Pump ^e	
h	10 No Pump ^e	
Pile No.: Start" Rock/Till End" Geophone Dist. (m) (mm/s)" Well 9 Well	•	
1 8/11/2017 14:41 8/11/2017 14:43 8/11/2017 15:01 25.0 3.43 0.069	0.020	
2 8/14/2017 15:43 8/14/2017 15:46 8/14/2017 16:19 23.3 4.83 0.050	0.013	
3 8/14/2017 16:25 8/14/2017 16:28 8/14/2017 16:57 21.1 4.83 0.045	0.045	
4 8/14/2017 14:51 8/14/2017 14:55 8/14/2017 15:21 18.4 4.83 0.046).697	
5 8/14/2017 13:52 8/14/2017 13:55 8/14/2017 14:11 15.5 4.83 0.059	0.035	
6 8/14/2017 13:12 8/14/2017 13:15 8/14/2017 13:33 12.7 4.83 0.055	0.009	
7 8/14/2017 11:40 8/14/2017 11:42 8/14/2017 12:18 10.4 4.83 0.062	0.049	
8 8/14/2017 11:20 8/14/2017 11:23 8/14/2017 11:33 9.5 4.83 0.050	0.880	
9 8/14/2017 7:47 8/14/2017 7:50 8/14/2017 7:54 10.4 4.83 0.041).733	
10 8/14/2017 10:59 8/14/2017 11:04 8/14/2017 11:12 12.7 4.83 0.028	0.010	
11 8/11/2017 10:53 8/11/2017 10:56 8/11/2017 11:00 15.5 3.43 1.090	0.049	
12 8/11/2017 10:42 8/11/2017 10:44 8/11/2017 10:47 18.4 3.43 0.871	0.014	
13 8/11/2017 10:28 8/11/2017 10:30 8/11/2017 10:34 21.1 3.43 1.346	0.738 0.005	
14 8/11/2017 10:14 8/11/2017 10:19 8/11/2017 10:21 23.3 3.43 0.068).051	
15 8/11/2017 9:00 8/11/2017 9:03 8/11/2017 9:07 25.0 3.43 0.037	0.764 0.004	
16 8/11/2017 11:07 8/11/2017 11:10 8/11/2017 11:14 26.0 3.43 0.229	0.034	
17 8/11/2017 13:12 8/11/2017 13:14 8/11/2017 13:19 26.4 3.43 0.230	0.684 0.009	1
18 8/11/2017 13:28 8/11/2017 13:42 26.0 3.43 0.135	0.713 0.004	

Restrikes

Well Information			
Well No.: 9		Well No.: 10	
Municipal Address:		Municipal Address:	
Distance from Turbine Centre:	680 m	Distance from Turbine Centre:	1122 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Highlighted values for Well 9 on August 11, 2017 are higher than and inconsistent with other measurements during pile driving at the T32 site. On August 11, 2017, construction activities were underway along the entrance road to T32, located as close as about 100 m from the well. These activities included: hammering, movements of large construction equipment (e.g., loaders, dump trucks, excavators, aggregate delivery equipment), and equipment travelled on site access road without construction mats, equipment operating on T32 access road resulted in "pounding" sounds. Well 9 area is subject to heavy passing traffic on Countryview Line (74 m from well) including: fuel trucks, loaded dump trucks, large transport trucks, a bus, and cranes/boom trucks among other vehicles. Further analysis of Well 9 vibration data was undertaken for 10 minute periods on August 11, 2017 during which pile driving was not occuring between 08:32:00 and 08:42:00, 09:12:00 and 09:22:00, 11:22:00 and 11:32:00, and 13:48:00 and 13:58:00. During these periods, the maximum velocities (regardless of direction) of the Well 9 casing ranged from 0.011 to 1.2 mm/s. Data shown for Well 9 during driving of Piles 12, 15, 16 and 17 (highlighted) are considered unrepresentative of pile driving and associated with other vibration sources. The piston pump for Well 9 is within the barn approximately 4 to 5 m from the well location. When the Well 9 pump was deliberately operated on September 8, 2017, in the absence of pile driving, well casing velocities were up to 0.04 mm/s. When the pump for Well 10 was operating, well casing vibrations of as much as 1.25 mm/s were measured. "No pump" data is provided to indicate measurements exclusive of data consistent with typical pump operations. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location: T33

		Vibration N	Aeasurements at T	urbine Site		Vibration N	leasuremen	ts at Wells
					Daily Maximum			
	Pile Driv	ing Times and Dat	es		Particle Velocity	Particle	Velocity (m	m/s) ^{c, d}
Pile No.:	Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 3	Well 4	No Pump ^e
1 9/	5/2017 13:10	9/5/2017 13:16	9/5/2017 13:25	10.9	5.3	0.015	0.118	
2 9/	5/2017 13:46	9/5/2017 13:55	9/5/2017 14:03	11.8	5.3	0.011	0.138	
3 9/	5/2017 14:11	9/5/2017 14:20	9/5/2017 14:27	14.0	5.3	0.056	0.174	
4 9/	5/2017 14:38	9/5/2017 14:46	9/5/2017 14:54	16.8	5.3	0.035	0.082	
59/	5/2017 15:05	9/5/2017 15:13	9/5/2017 15:18	19.7	5.3	0.049	0.137	
69/	5/2017 15:34	9/5/2017 15:44	9/5/2017 15:48	22.4	5.3	0.009	0.072	
7 9/	5/2017 17:02	9/5/2017 17:10	9/5/2017 17:10	24.6	5.3	0.030	0.298	
8 9/	5/2017 17:32	9/5/2017 17:41	9/5/2017 17:49	26.3	5.3	0.036	0.131	
9 9/	5/2017 18:14	9/5/2017 18:21	9/5/2017 18:28	27.4	5.3	0.034	0.083	
10 9/	6/2017 9:30	9/6/2017 9:47	9/6/2017 9:53	27.8	3.2	0.004	0.243	
11 9/	6/2017 10:09	9/6/2017 10:25	9/6/2017 10:35	27.4	3.2	0.004	0.089	
12 9/	6/2017 12:03	9/6/2017 12:16	9/6/2017 12:26	26.3	3.2	0.005	0.179	
13 9/	6/2017 12:58	9/6/2017 13:08	9/6/2017 13:16	24.6	3.2	0.003	0.162	
14 9/	6/2017 13:33	9/6/2017 13:43	9/6/2017 13:58	22.4	3.2	0.004	0.161	
15 9/	6/2017 14:37	9/6/2017 14:45	9/6/2017 14:54	19.7	3.2	0.005	4.987	
16 9/	6/2017 16:01	9/6/2017 16:08	9/6/2017 16:20	16.8	3.2	0.006	0.277	
17 9/	6/2017 15:29	9/6/2017 15:35	9/6/2017 15:45	14.0	3.2	0.003	0.175	
18 9/	6/2017 14:13	9/6/2017 14:24	9/6/2017 14:36	11.8	3.2	0.004	0.622	
Restrikes						_		
6 9/	6/2017 18:15	9/6/2017 18:15	9/6/2017 18:23	22.4	3.2	0.009	4.858	
5 9/	6/2017 17:02	9/6/2017 17:02	9/6/2017 17:03	19.7	3.2	0.023	0.129	
Well Inform	ation							
Well No.:	3				Well No.: 4			
Municipal Ad					Municipal Address:			
•	n Turbine Centre	. 177	8 m		Distance from Turbine	Centre:	2080	m
2 istance iron			0		bistance nom rurbine		2000	

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time. During vibration monitoring on September 5, 2017, a forklift operated close to the geophone between 16:00:00 and 16:30:00 and triggered a maximum peak particle velocity of 6.2 mm/s. Value shown above excludes the peak measurement triggered by the forklift. On September 5, 2017, tractors, harvest haul trucks and other equipment travelled through Well 3 property frequently from 12:48 to 15:55 and occasionally thereafter until 16:50. On September 5, 2017, St. Clair Road traffic passing at 78 m from Well 4 was observed to include large tractor-trailers, concrete mixers and dump trucks at a rate of about 1 heavy vehicle every 1.5 to 2 minutes. Passenger vehicle movements on the Well 4 property passed and were parked near the well at 12:10, 14:40, 14:47, 15:06, 15:17, 15:42, 16:16, 16:35 and 19:02. On September 6, 2017, heavy vehicle traffic near Well 4 was similar to September 5, 2017. Combine harvesting was on-going as close as 25 to 30 m from Well 4, starting at 8:53 and continuing to after 14:30 on September 6, 2017. Passenger vehicle traffic on September 6, 2017 adjacent to Well 4 on the property was noted at 7:41, 10:40 - 10:45, 10:56 - 11:04, 11:46 - 11:52, 12:57 - 12:59, 13:22, 14:31, 14:36, 16:35, 16:42, 16:49, and 18:34. Various individuals were at and in the well shed at 16:35 to 16:54. Prior to September 6, 2017 obersvations by Golder personnel indicated that a pump was not connected at Well 4. During the afternoon of September 6, 2017 a pump was connected and operational. From 17:02 to 17:18 the newly connected Well 4 pump was cycled on and off, operating for periods of 1 to more than 7 minutes. The owner was physically working on Well 4 after 17:18 and returning to well shed frequently. All data highlighted above is considered to have been significantly influenced by near-well activities, particularly work directly related to the Well 4 pump and shed.

Turbine Location:

T35

		Vibration Me	asurements at Tur	bine Site		Vibration I	Measureme	nts at Wells
					Daily Maximum			
	Pile Drivin	g Times and Dates			Particle Velocity	Particle	e Velocity (n	nm/s) ^{c, d}
Pile No.:	Start ^a	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 5	Well 6	No Pump ^e
1	6/21/2017 9:16	6/21/2017 9:31	6/21/2017 9:58	25.3	4.32	0.005	0.011	
1A	7/4/2017 14:09	7/4/2017 14:15	7/4/2017 14:20	25.8	4.70	0.011	0.085	
2	6/28/2017 11:40	6/28/2017 11:50	6/28/2017 11:56	27.0	6.86	0.004	0.002	
3	6/29/2017 11:15	6/29/2017 11:26	6/29/2017 11:37	28.1	4.70	0.004	0.080	0.009
4	6/29/2017 11:45	6/29/2017 12:28	6/29/2017 12:35	28.4	4.70	0.002	0.003	
5	6/29/2017 10:36	6/29/2017 10:53	6/29/2017 10:59	28.1	4.70	0.003	0.008	
6	6/29/2017 9:49	6/29/2017 10:09	6/29/2017 10:19	27.0	4.70	0.002	0.017	
7	6/28/2017 16:45	6/28/2017 16:55	6/28/2017 16:59	25.3	6.86	0.002	0.006	
8	6/28/2017 16:19	6/28/2017 16:28	6/28/2017 16:36	23.0	6.86	0.004	0.008	
9	6/29/2017 15:55	6/29/2017 16:03	6/29/2017 16:09	20.3	4.70	0.003	0.011	
10	6/28/2017 15:23	6/28/2017 15:35	6/28/2017 15:43	17.4	6.86	0.002	0.010	
11	6/28/2017 14:34	6/28/2017 14:52	6/28/2017 14:56	14.6	6.86	0.002	0.081	0.011
12	6/28/2017 14:04	6/28/2017 14:19	6/28/2017 14:23	12.4	6.86	0.003	0.016	
13	6/26/2017 16:52	6/26/2017 17:15	6/26/2017 17:22	11.6	4.06	0.004	0.093	0.015
13A	6/30/2017 10:53	6/30/2017 11:24	6/30/2017 11:36	11.6	4.19	0.001	0.093	0.015
14	6/28/2017 8:34	6/28/2017 8:59	6/28/2017 9:16	12.4	6.86	0.005	0.110	0.023
15	6/26/2017 16:03	6/26/2017 16:26	6/26/2017 16:28	14.6	4.06	0.002	0.009	
15A	7/4/2017 12:54	7/4/2017 13:00	7/4/2017 13:21	15.1	4.70	0.008	0.130	
16	6/28/2017 9:32	6/28/2017 9:52	6/28/2017 9:57	17.4	6.86	0.002	0.004	
17	6/26/2017 7:45	6/26/2017 8:19	6/26/2017 8:20	20.3	4.06	0.012	0.002	
17A	7/4/2017 13:39	7/4/2017 13:45	7/4/2017 13:51	20.8	4.70	0.004	0.105	
18	6/28/2017 10:40	6/28/2017 10:55	6/28/2017 11:25	23.0	6.86	0.004	0.015	
Restrikes								
1	6/26/2017 7:39	6/26/2017 7:39	6/26/2017 7:39	25.3	4.06	0.007	0.007	
17	6/28/2017 12:54	6/28/2017 12:54	6/28/2017 13:14	20.3	6.86	0.004	0.014	
10	6/29/2017 13:31	6/29/2017 13:31	6/29/2017 13:32	17.4	4.70	0.006	0.004	
13	6/29/2017 13:37	6/29/2017 13:37	6/29/2017 13:42	11.6	4.70	0.004	0.002	
14	6/29/2017 13:47	6/29/2017 13:47	6/29/2017 13:50	12.4	4.70	0.006	0.003	
16	6/29/2017 13:54	6/29/2017 13:54	6/29/2017 13:56	17.4	4.70	0.005	0.003	
15	6/29/2017 14:20	6/29/2017 14:20	6/29/2017 14:25	14.6	4.70	0.008	0.011	
PDA								
13A	7/6/2017 10:06	7/6/2017 10:06	7/6/2017 10:15	12.1	5.21	0.005	0.138	
13	7/6/2017 11:05	7/6/2017 11:05	7/6/2017 11:23	11.6	5.21	0.006	0.219	
15A	7/6/2017 11:39	7/6/2017 11:39	7/6/2017 11:40	15.1	5.21	0.009	0.130	
17A	7/6/2017 11:55	7/6/2017 11:55	7/6/2017 11:56	20.8	5.21	0.010	0.061	
1A	7/6/2017 12:18	7/6/2017 12:18	7/6/2017 12:18	25.8	5.21	0.011	0.084	
Well Inforr	nation							
Well No.:	5				Well No.: 6			
Municipal A	ddress:				Municipal Address:			
Distance fro	m Turbine Centre:	623	m		Distance from Turbine (Centre:	880) m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Tractor was observed operating frequently near Well 6. Water pump was observed cycling on and off during pile driving operations and remaining on for periods of 2 to 4 minutes. When pump was operating, casing at Well 6 exhibited particle velocities in the range of 0.08 to 0.12 mm/s and dominated analysis of data. Pile restrike events were of short duration with the following total number of hammer blows shown in parentheses: Pile 1 (20), Pile 10 (5 to 7), 13 (205), 14 (140), 16 (51), 15 (214). Pile 17 experienced 446 hammer blows over a period of 9 minutes. Piles noted with PDA indicate restrike events during which pile dynamics analyzer monitoring was completed. Piles noted with "A" represent piles installed to replace similarly-numbered piles. After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Monitoring of deliberate pump operation at Well 6 on July 13, 2017, during a period when no pile driving was occuring, measured maximum particle velocities of 0.08 to 0.8 mm/s. Where total driving duration between till/rock start and end times noted above is not representative, actual driving duration is shown in parentheses in minutes and seconds: 13A(10:00), 15A(6:24), 17 restrike (14:00), 13PDA(6:20). Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location: T36

		Vibration N	leasurements at Tu	urbine Site		Vibration M	easurement	ts at Wells
	Pile Drivi	ng Times and Date	25		Daily Maximum Particle Velocity	Particle	Velocity (mr	m/s) ^{c, d}
Pile No.:	Start ^ª	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 5	Well 6	No Pump ^e
1 7	/26/2017 10:33	7/26/2017 10:38	7/26/2017 10:48	23.3	7.87	0.005	0.086	
2 7	/26/2017 18:16	7/26/2017 18:21	7/26/2017 18:28	21.1	7.87	0.003	0.016	
37	/26/2017 19:24	7/26/2017 19:28	7/26/2017 19:42	18.4	7.87	0.002	0.005	
47	/26/2017 18:37	7/26/2017 19:07	7/26/2017 19:19	15.5	7.87	0.002	0.027	
5 7	/26/2017 17:59	7/26/2017 18:04	7/26/2017 18:10	12.7	7.87	0.012	0.016	
6 7	/26/2017 17:30	7/26/2017 17:34	7/26/2017 17:44	10.4	7.87	0.004	0.032	
7 7	/26/2017 17:10	7/26/2017 17:13	7/26/2017 17:23	9.5	7.87	0.010	0.044	
8 7	/26/2017 16:41	7/26/2017 16:45	7/26/2017 16:56	10.4	7.87	0.007	0.038	
97	/26/2017 16:19	7/26/2017 16:23	7/26/2017 16:33	12.7	7.87	0.004	0.010	
10 7	/26/2017 15:48	7/26/2017 15:51	7/26/2017 16:03	15.5	7.87	0.005	0.070	
11 7	/26/2017 15:12	7/26/2017 15:15	7/26/2017 15:23	18.4	7.87	0.004	0.045	
12 7	/26/2017 14:32	7/26/2017 14:45	7/26/2017 14:57	21.1	7.87	0.005	0.048	
13 7	/26/2017 14:15	7/26/2017 14:21	7/26/2017 14:28	23.3	7.87	0.014	0.018	
14 7	/26/2017 13:58	7/26/2017 14:03	7/26/2017 14:08	25.0	7.87	0.009	0.031	
15 7	/26/2017 13:16	7/26/2017 13:20	7/26/2017 13:32	26.0	7.87	0.005	0.111	0.029
16 7	/26/2017 12:48	7/26/2017 12:53	7/26/2017 13:05	26.4	7.87	0.011	0.038	
17 7	/26/2017 11:41	7/26/2017 11:47	7/26/2017 11:56	26.0	7.87	0.005	0.021	
18 7	/26/2017 11:08	7/26/2017 11:12	7/26/2017 11:22	25.0	7.87	0.006	0.068	
Restrikes								
16 7	/27/2017 7:36	7/27/2017 7:36	7/27/2017 7:37	26.4	0.89	0.003	0.437	0.028

Well Information			
Well No.: 5		Well No.: 6	
Municipal Address:		Municipal Address:	
Distance from Turbine Centre:	4201 m	Distance from Turbine Centre:	3380 m

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 3, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: A single restrike event occured on the day following with a total of 24 hammer blows on Pile 16 during a period of approximately 65 seconds. After installation, one pile was struck again with the hammer to demonstrate resistance performance and this event is noted under "restrikes". Water pump was observed cycling on and off during pile driving operations and remaining on for periods of 2 to 4 minutes. When pump was operating during pile driving, casing at Well 6 exhibited particle velocities of up to 0.44 mm/s and this dominated analysis of data. Monitoring of deliberate pump operation at Well 6 on July 13, 2017, during a period when no pile driving was occuring, measured maximum particle velocities of 0.08 to 0.8 mm/s. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location: T43

		Vibration M	easurements at Turb	ine Site	Daily Maximum	Vibration N	leasurement	s at Wells
	Pile D	riving Times and Dates	5		Particle Velocity	Particle	Velocity (mr	n/s) ^{c, d}
Pile No.:	Start ^ª	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 11	Well 12	No Pump ^e
1 8/1	18/2017 12:35	8/18/2017 12:45	8/18/2017 12:52	24.8	5.59	0.006	0.008	
2 8/3	18/2017 13:01	8/18/2017 13:12	8/18/2017 13:20	23.8	5.59	0.006	0.007	
3 8/2	21/2017 8:28	8/21/2017 8:38	8/21/2017 8:48	22.2	3.18	0.010	0.007	
4 8/2	21/2017 12:47	8/21/2017 12:59	8/21/2017 13:10	20.0	3.18	0.007	0.006	
5 8/2	21/2017 9:03	8/21/2017 9:16	8/21/2017 9:23	17.4	3.18	0.006	1.468	0.009
6 8/2	21/2017 7:56	8/21/2017 8:08	8/21/2017 8:17	14.5	3.18	0.024	0.024	
7 8/:	18/2017 14:32	8/18/2017 14:43	8/18/2017 14:50	11.6	3.18	0.006	0.006	
8 8/3	18/2017 13:37	8/18/2017 13:49	8/18/2017 13:57	9.3	3.18	0.007	0.005	
9 8/3	15/2017 15:09	8/15/2017 15:18	8/15/2017 15:27	8.3	7.37	0.086	0.005	
10 8/1	15/2017 13:21	8/15/2017 13:28	8/15/2017 13:37	9.3	7.37	0.004	0.002	
11 8/:	15/2017 12:22	8/15/2017 12:34	8/15/2017 12:35	11.6	7.37	0.002	0.006	
12 8/:	15/2017 11:58	8/15/2017 12:10	8/15/2017 12:13	14.5	7.37	0.018	0.018	
13 8/3	15/2017 9:19	8/15/2017 9:42	8/15/2017 11:40	17.4	7.37	0.003	0.002	
14 8/3	15/2017 15:46	8/15/2017 15:57	8/15/2017 16:10	20.0	7.37	0.006	0.013	
15 8/3	18/2017 9:17	8/18/2017 9:23	8/18/2017 9:31	22.2	5.59	0.005	0.009	
16 8/3	18/2017 9:43	8/18/2017 9:50	8/18/2017 9:59	23.8	5.59	0.012	0.009	
17 8/3	18/2017 10:10	8/18/2017 10:17	8/18/2017 10:28	24.8	5.59	0.004	0.018	
18 8/1	18/2017 11:45	8/18/2017 12:02	8/18/2017 12:21	25.2	5.59	0.008	0.004	
Restrikes								
14 8/2	21/2017 10:43	8/21/2017 10:43	8/21/2017 10:43	20.0	3.18	0.012	0.010	
16(1) 8/2	21/2017 10:30	8/21/2017 10:30	8/21/2017 10:30	23.8	3.18	0.011	0.010	
16(2) 8/2	21/2017 11:52	8/21/2017 11:52	8/21/2017 11:54	22.2	3.18	0.005	0.029	

Well Inform	ation
Well No.:	11
Municipal Add	dress:
Distance from	Turbine Centre:

Well No.:	12	
Municipal Addre	ss:	
Distance from Tu	urbine Centre:	 4359 r

ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Vibration measurements were undertaken on August 17, 2017 at Wells 11 and 12 during water quality sampling events in the absence of pile driving within the cluster. Both pumps turned on and operated during the sampling events. Maximum vibration measurements for Well 11 were 0.016 mm/s and this pump was located within the residence approximately 40 m from the well. Maximum vibration measurements for Well 12 were 0.896 mm/s and the pump was mounted on the well casing. During pile driving for turbine T3, on August 23, 2017, the maximum vibration measurement of the Well 12 casing was 2.4 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Note that driving/restriking of some piles occured in relatively rapid succession and, therefore, the vibration measurement data for the 10 minute periods of analysis are applicable to multiple piles. Driving of pile 13 was started and stopped on multiple occasions because of problems with fuel pump resulting in a total of approximately 88 minutes of standby between driving intervals for a total driving time on till/rock was 8:46 (minutes:seconds) due to intermittant stops and starts. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location: T45

		Vibration M	easurements at Tu	urbine Site		Vibration I	Measureme	nts at Wells
	Dile Drivi	ng Timos and Data			Daily Maximum Particle Velocity	D	e Velocity (n	, ,c, d
		ng Times and Date						
Pile No.:	Start [®]	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 11	Well 12	No Pump ^e
	8/23/2017 11:47	8/23/2017 11:53	8/23/2017 12:18	14.8	7.75	0.025	0.010	
	8/23/2017 14:20	8/23/2017 14:27	8/23/2017 14:41	12.0	7.75	0.024	NA ^e	
	8/23/2017 15:10	8/23/2017 15:17	8/23/2017 15:27	9.6	7.75	0.017	0.005	
	8/23/2017 16:49	8/23/2017 16:55	8/23/2017 17:05	8.7	7.75	0.008	1.148	
	8/23/2017 17:22	8/23/2017 17:30	8/23/2017 17:44	9.6	7.75	0.011	0.007	
	8/23/2017 10:50	8/23/2017 11:00	8/23/2017 11:16	12.0	7.75	0.018	0.016	
	8/24/2017 8:30	8/24/2017 8:38	8/24/2017 8:47	14.8	3.30	0.014	0.014	
	8/24/2017 9:05	8/24/2017 9:14	8/24/2017 9:21	17.7	3.30	0.021	0.040	
	8/24/2017 9:36	8/24/2017 9:44	8/24/2017 10:48	20.4	3.30	0.018	1.511	
	8/23/2017 12:49	8/23/2017 12:58	8/23/2017 13:15	22.6	7.75	0.009	0.005	
	8/24/2017 13:32	8/24/2017 13:42	8/24/2017 13:48	24.2	3.30	0.004	0.018	
	8/24/2017 15:06	8/24/2017 15:15	8/24/2017 15:23	25.2	3.30	0.007	0.008	
	8/24/2017 15:35	8/24/2017 15:44	8/24/2017 15:53	25.6	3.30	0.026	0.034	
	8/24/2017 16:05	8/24/2017 16:14	8/24/2017 16:22	25.2	3.30	0.012	0.061	
	8/24/2017 16:40	8/24/2017 16:46	8/24/2017 16:55	24.2	3.30	0.015	0.007	
	8/24/2017 17:11	8/24/2017 17:18	8/24/2017 17:24	22.6	3.30	0.012	0.004	
	8/24/2017 17:33	8/24/2017 17:39	8/24/2017 17:45	20.4	3.30 3.30	0.006	0.009	
10 0	8/24/2017 17:57	8/24/2017 18:08	8/24/2017 18:12	17.7	3.30	0.005	0.006	
Restrikes								
6 8	8/23/2017 13:28	8/23/2017 13:28	8/23/2017 13:29	12.0	7.75	0.043	0.017	
18	8/23/2017 13:13	8/23/2017 13:13	8/23/2017 13:13	14.8	7.75	0.009	0.005	
15 8	8/25/2017 7:45	8/25/2017 7:45	8/25/2017 7:47	24.2	5.97	0.015	0.032	
16 8	8/25/2017 9:11	8/25/2017 9:11	8/25/2017 9:13	22.6	5.97	0.007	2.335	0.008
17 8	8/25/2017 9:03	8/25/2017 9:03	8/25/2017 9:06	20.4	5.97	0.007	0.019	
18 8	8/25/2017 8:51	8/25/2017 8:51	8/25/2017 8:55	17.7	5.97	0.011	0.011	
18	8/25/2017 11:44	8/25/2017 11:44	8/25/2017 11:45	14.8	5.97	0.013	0.037	
12 8	8/25/2017 9:22	8/25/2017 9:22	8/25/2017 9:25	25.2	5.97	0.024	0.010	
18 8	8/25/2017 9:16	8/25/2017 9:16	8/25/2017 9:18	17.7	5.97	0.011	0.011	
4 8	8/25/2017 8:43	8/25/2017 8:43	8/25/2017 8:45	8.7	5.97	0.013	0.007	
5 8	8/25/2017 8:36	8/25/2017 8:36	8/25/2017 8:37	9.6	5.97	0.013	0.013	
78	8/25/2017 8:30	8/25/2017 8:30	8/25/2017 8:32	14.8	5.97	0.006	0.028	
8 8	8/25/2017 8:25	8/25/2017 8:25	8/25/2017 8:26	17.7	5.97	0.006	0.018	
10 8	8/25/2017 9:28	8/25/2017 9:28	8/25/2017 10:19	22.6	5.97	0.021	0.011	
13 8	8/25/2017 7:53	8/25/2017 7:54	8/25/2017 7:59	25.6	5.97	0.013	0.007	
98	8/25/2017 8:09	8/25/2017 8:09	8/25/2017 8:19	20.4	5.97	0.028	0.010	
11 8	8/25/2017 8:03	8/25/2017 8:03	8/25/2017 8:05	24.2	5.97	0.008	0.024	
Spliced								
13	8/30/2017 11:06	8/30/2017 11:06	8/30/2017 11:07	25.6	6.10	0.006	0.012	
2	8/30/2017 10:06	8/30/2017 10:06	8/30/2017 10:06	12.0	6.10	0.005	0.018	
3	8/30/2017 10:09	8/30/2017 10:09	8/30/2017 10:10	9.6	6.10	0.005	0.018	
4	8/30/2017 10:14	8/30/2017 10:14	8/30/2017 10:16	8.7	6.10	0.011	0.014	
5	8/30/2017 10:19	8/30/2017 10:19	8/30/2017 10:20	9.6	6.10	0.011	0.014	
6	8/30/2017 10:23	8/30/2017 10:23	8/30/2017 10:25	12.0	6.10	0.013	0.016	
7	8/30/2017 10:27	8/30/2017 10:27	8/30/2017 10:29	14.8	6.10	0.013	0.016	
8	8/30/2017 10:32	8/30/2017 10:32	8/30/2017 10:34	17.7	6.10	0.013	0.013	
10	8/30/2017 10:40	8/30/2017 10:40	8/30/2017 11:00	22.6	6.10	0.003	0.018	
Replaceme	nt Piles							
6A	9/12/2017 7:51	9/12/2017 7:59	9/12/2017 9:41	13.0	4.70	0.014	0.007	
10A	9/12/2017 7:31	9/12/2017 8:36	9/12/2017 9:37	23.6	4.70	0.014	0.003	
10A 13A	9/12/2017 9:07	9/12/2017 9:13	9/12/2017 9:29	26.6	4.70	0.015	0.003	
134	5/12/201/ 5.0/	5/12/2017 5.15	5/12/2017 5.25	20.0	7.70	0.015	0.011	

Well Information Well No.: 11 Municipal Address:

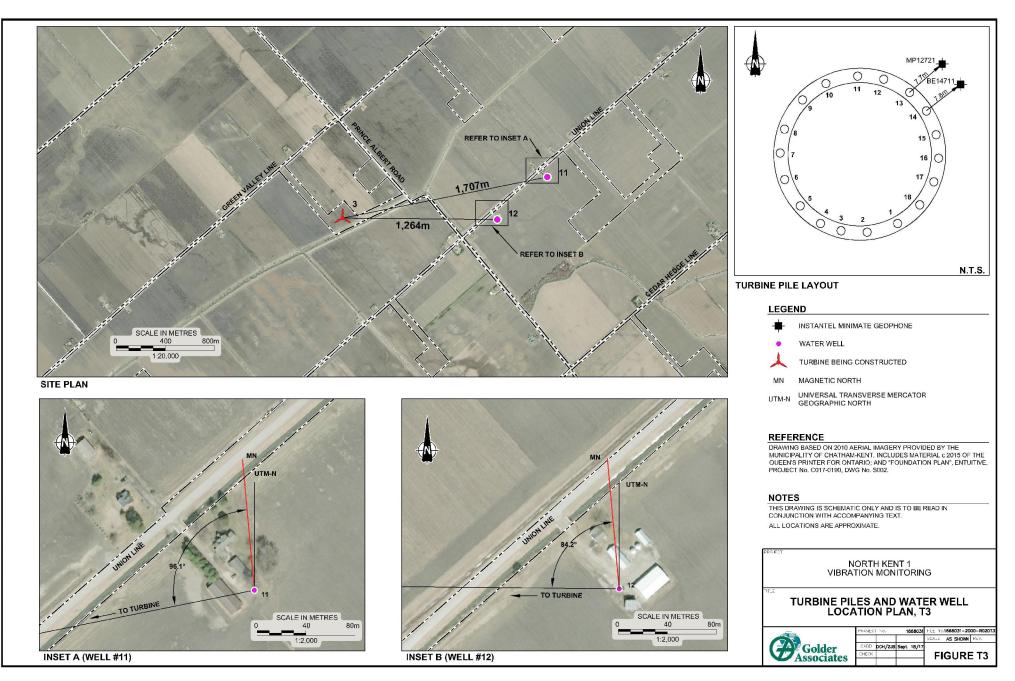
Distance from Turbine Centre:

Well No.:12Municipal Address:Distance from Turbine Centre:

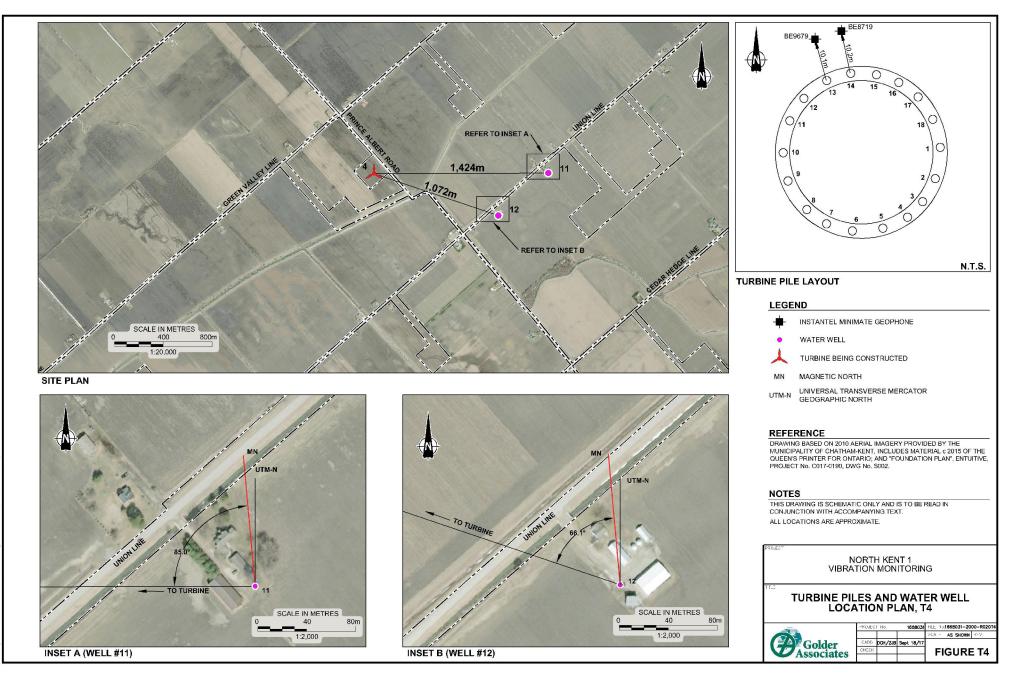
ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s Monitoring Notes: After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Vibration measurements were undertaken on August 17, 2017 at Wells 11 and 12 during water quality sampling events in the absence of pile driving within the cluster. Both pumps turned on and operated during the sampling events. The maximum vibration measurement for Well 11 was 0.016 mm/s and this pump was located within the residence approximately 40 m from the well. The maximum vibration measurement for Well 12 was 0.896 mm/s and the pump was mounted on the well casing. The maximum vibration measurement of the Well 12 casing during all monitoring completed to the date of report issue was about 2.4 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Note that driving/restriking of some piles occured in relatively rapid succession and, therefore, the vibration measurement data for the 10 minute periods of analysis are applicable to multiple piles. Data for Well 12 during driving of Pile 2 on August 23, 2017 was not captured when data logger battery failed and then changed. Total driving time on till/rock for Pile 9 was interrupted by repairs to the pile driving hammer and the actual driving duration on till/rock was 8:00 (minutes:seconds) for this pile. Total driving time on till/rock for restrike of Pile 10 was interrupted by damage to the pile top, splicing and welding and total driving duration on till/rock was 5:48 (minutes:seconds). Driving time on till/rock for driving of Pile 6A was interrupted from 8:07:35 to 8:10:35 and from 8:12:45 to 9:40:28. Driving time on till/rock for driving of Pile 10A was interrupted from 8:49:30 to 9:37:05. Driving time on till/rock for driving of Pile 13A was interrupted from 9:18:45 to 9:26:30. Total pile driving durations derived from start and end times noted above includes labour breaks, equipment work, splicing, welding and other standby time.

Turbine Location: T46


		Vibration N	leasurements at Tu	urbine Site		Vibration	Measuremer	nts at Wells
					Daily Maximum			
	Pile Drivi	ng Times and Date	es		Particle Velocity	Particl	e Velocity (m	nm/s) ^{c, d}
Pile No.:	Start ^ª	Rock/Till	End ^a	Geophone Dist. (m)	(mm/s) ^b	Well 11	Well 12	No Pump ^e
18	8/29/2017 8:38	8/29/2017 8:44	8/29/2017 9:10	26.5	5.80	NA ^e	0.002	
2 8	3/29/2017 9:24	8/29/2017 9:33	8/29/2017 9:49	25.5	5.80	NA ^e	0.003	
3 8	8/29/2017 10:14	8/29/2017 10:19	8/29/2017 10:30	23.8	5.80	NA ^e	0.037	
4 8	8/29/2017 12:41	8/29/2017 12:52	8/29/2017 13:01	21.5	5.80	0.004	0.010	
5 8	8/29/2017 12:00	8/29/2017 12:09	8/29/2017 12:28	18.9	5.80	NA ^e	0.003	
6 8	8/29/2017 11:02	8/29/2017 11:11	8/29/2017 11:25	16.0	5.80	NA ^e	0.006	
7 8	8/28/2017 16:35	8/28/2017 16:47	8/28/2017 16:53	13.1	7.85	0.015	0.071	
8 8	8/28/2017 16:02	8/28/2017 16:12	8/28/2017 16:20	10.9	7.85	0.007	1.551	0.039
9 8	8/28/2017 13:25	8/28/2017 13:34	8/28/2017 13:36	10.0	7.85	0.006	0.011	
10 8	8/28/2017 12:44	8/28/2017 12:56	8/28/2017 12:59	10.9	7.85	0.006	0.008	
11 8	8/28/2017 11:25	8/28/2017 11:34	8/28/2017 11:41	13.1	7.85	NA ^e	0.011	
12 8	8/28/2017 10:07	8/28/2017 10:17	8/28/2017 10:20	16.0	7.85	0.003	0.009	
13 8	8/28/2017 9:33	8/28/2017 9:43	8/28/2017 9:49	18.9	7.85	0.021	0.015	
14 8	3/28/2017 9:00	8/28/2017 9:12	8/28/2017 9:16	21.5	7.85	0.003	0.003	
15 8	3/28/2017 8:30	8/28/2017 8:44	8/28/2017 8:47	23.8	7.85	0.004	0.004	
16 8	8/28/2017 13:53	8/28/2017 14:03	8/28/2017 14:07	25.5	7.85	0.002	0.006	
17 8	3/28/2017 14:27	8/28/2017 14:38	8/28/2017 14:48	26.5	7.85	0.017	0.004	
18 8	3/29/2017 7:53	8/29/2017 8:01	8/29/2017 8:05	26.9	5.80	NA ^e	0.002	
Restrikes								
9 8	8/29/2017 13:14	8/29/2017 13:14	8/29/2017 13:16	10.0	5.80	0.005	0.006	
8 8	8/29/2017 13:25	8/29/2017 13:25	8/29/2017 13:26	10.9	5.80	0.003	0.052	
16 8	8/29/2017 13:36	8/29/2017 13:36	8/29/2017 13:38	25.5	5.80	0.003	0.006	

Well Information				
Well No.: 11		Well No.:	12	
Municipal Address:		Municipal Address	:	
Distance from Turbine Centre:	1697 m	Distance from Turl	bine Centre:	2170 m


ISO 2631-2 particle velocity threshold for human perception is 0.1 mm/s between approximately 8 to 100 Hz

Background values at T5 and T42 test pile sites and Wells 1 and 2, when other common activities observed ranged from <0.01 to approximately 0.07 mm/s

Monitoring Notes: Data obtained during pile dynamic analyses is pending. Piles noted with "A" represent piles installed to replace similarlynumbered piles. After installation, selected piles were struck again with the hammer to demonstrate resistance performance and these are noted as "restrikes". Total duration for pile driving on rock/till based on times noted above is not representative for Piles 1 and where the actual duration for driving on till/rock was (minutes:seconds): 1(11:30) and 5(18:32). Maximum vibrations for Well 12 were 1.55 mm/s for August 29, 2017. The pump was mounted on the well casing. During pile driving on August 23, 2017, the maximum vibration measurement of the Well 12 casing was 2.4 mm/s for clearly definable periods during which the pump was operating. Data shown for the "no pump" condition was obtained during pile driving when the pump was not operating. Data not available for Piles 1, 2, 3, 5, 6, 11 and 18 at Well 11 on August 28 and 29, 2017 due to several separate battery failures in monitoring equipment. Batteries were subsequently replaced upon discovery.

ing file: '668031-2000-R020T3.cwg Seo 20, 2017 - '2:49c

MN UTM-N

137.1

TOTUR

OMTROVEN INE

SCALE IN METRES

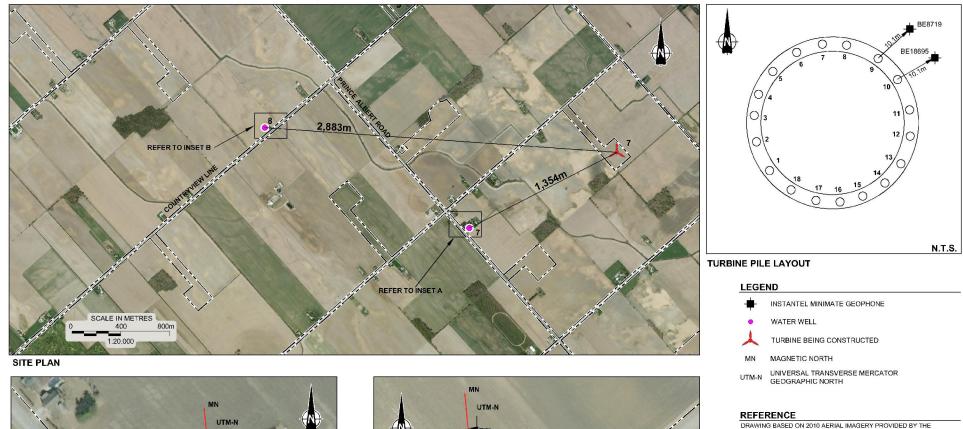
40

1:2.000

80m

REFERENCE DRAWING BASED ON 2010 AERIAL IMAGERY PROVIDED BY THE MUNICIPALITY OF CHATHAM-KENT, INCLUDES MATERIAL & 2015 OF THE QUEENS PRINTER FOR ONTARIO; AND "FOUNDATION PLAN", ENTUITIVE, PROJECT No. C017-0190, DWG No. S002.

NOTES


THIS DRAWING IS SCHEMATIC ONLY AND IS TO BE READ IN CONJUNCTION WITH ACCOMPANYING TEXT. ALL LOCATIONS ARE APPROXIMATE.

INSET B (WELL #8)

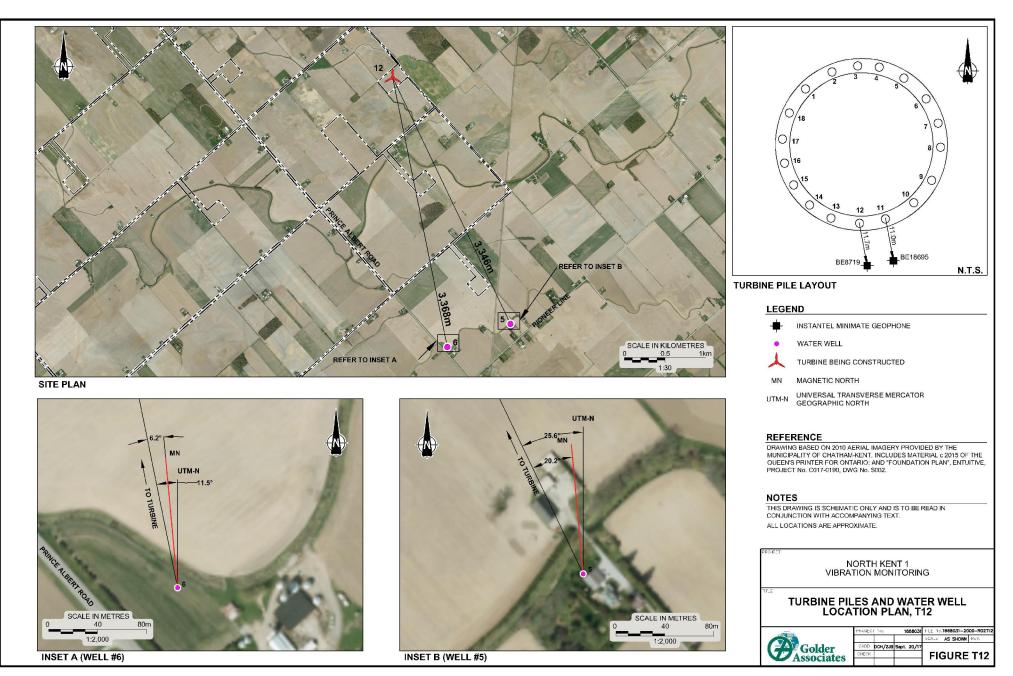
g file: 1608031-2000-R020T6.cwg Sep 20, 2017 - 12:525-

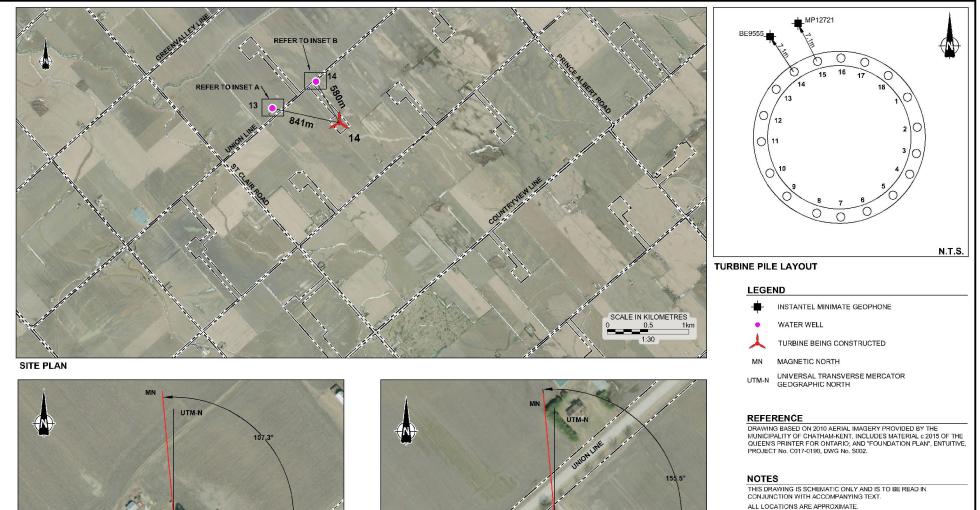
DRAWING BASED ON 2010 ACRIAL IMAGENT PROVIDED BY THE MUNICIPALITY OF CHATHAM-KENT, INCLUDES MATERIAL c 2015 OF THE QUEEN'S PRINTER FOR ONTARIO; AND "FOUNDATION PLAN", ENTUITIVE, PROJECT No. C017-0190, DWG No. S002.

NOTES

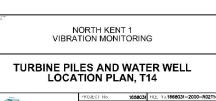
40

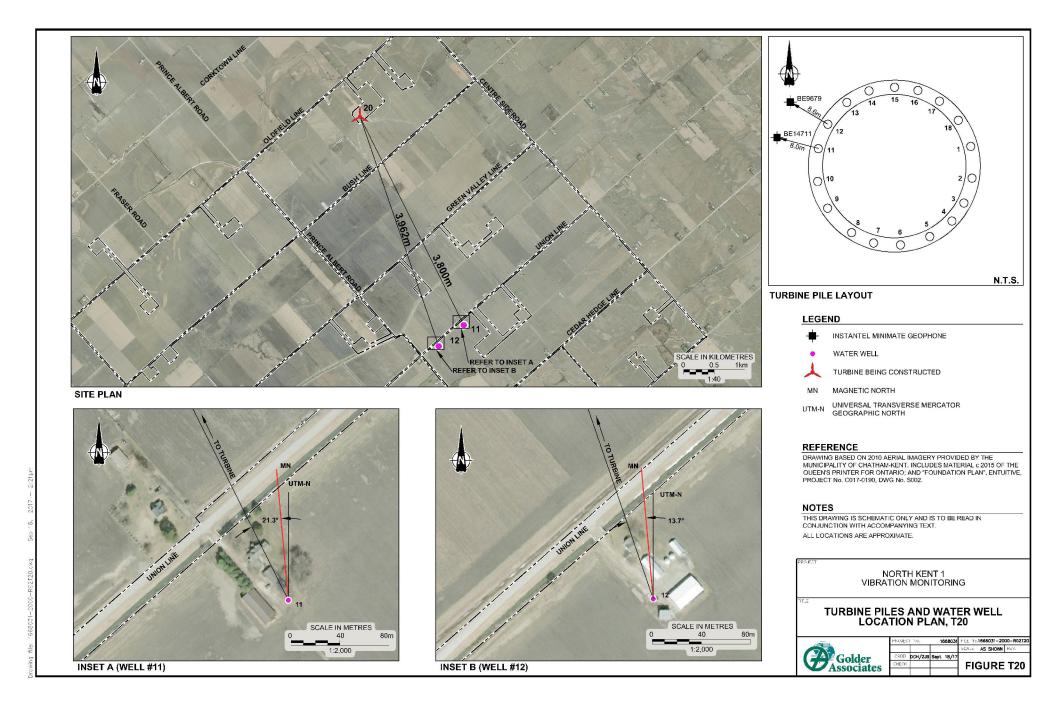
1:2,000

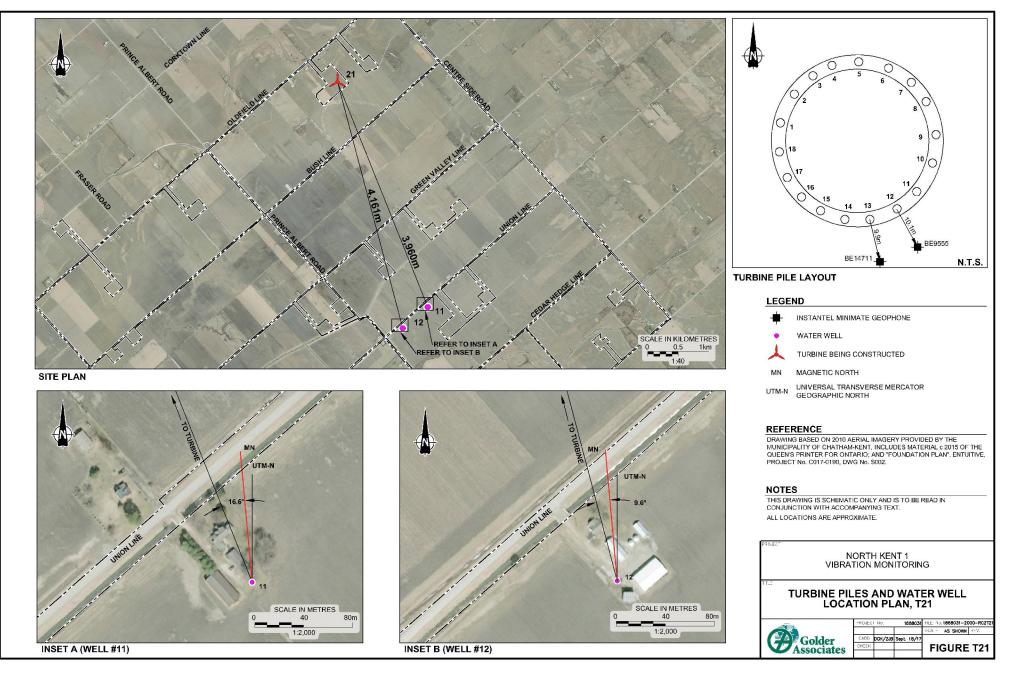

80m


THIS DRAWING IS SCHEMATIC ONLY AND IS TO BE READ IN CONJUNCTION WITH ACCOMPANYING TEXT. ALL LOCATIONS ARE APPROXIMATE.

SCALE IN METRES 40 80m 1:2,000 INSET A (WELL #7)


COUNTRYNEW UNE TO TURBINE SCALE IN METRES INSET B (WELL #8)




DCH/ZJB Sept. 1B/1

Golder

SCA - AS SHOWN H-V.

FIGURE T14

DRAWING BASED ON 2010 AERIAL IMAGERY PROVIDED BY THE MUNICIPALITY OF CHAITHAM-KENT, INCLUDES MATERIAL c 2015 OF THE OUEEN'S PRINTER FOR ONTARIO; AND 'FOUNDATION PLAN', ENTUITIVE, PROJECT No. C017-0190, DWG No. SC02.

NOTES

102 4

SCALE IN METRES

40

1:2,000

80m

TO TURBINE

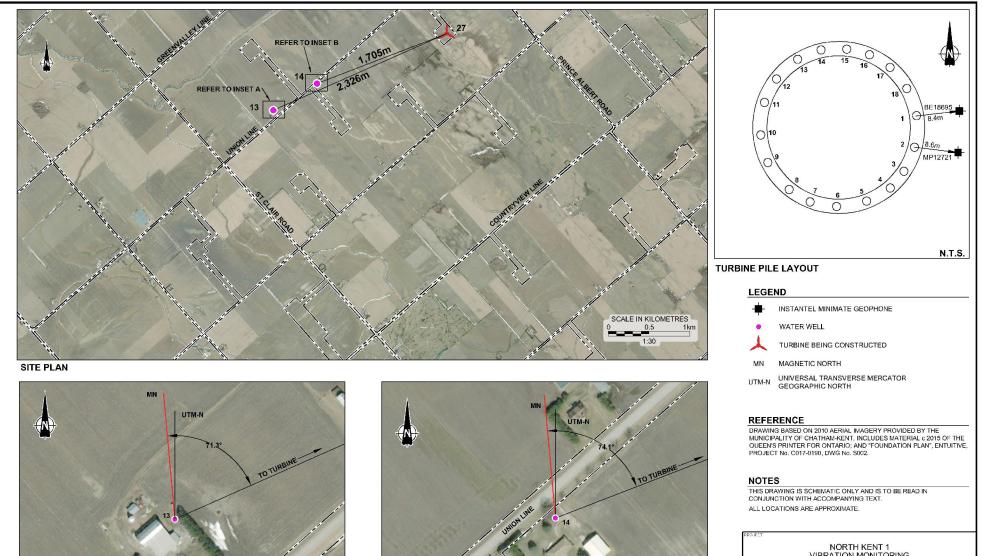
THIS DRAWING IS SCHEMATIC ONLY AND IS TO BE READ IN CONJUNCTION WITH ACCOMPANYING TEXT. ALL LOCATIONS ARE APPROXIMATE.

INSET A (WELL #13)

TO TURBINE

UNIONLINE

...


SCALE IN METRES

40

1:2,000

80m

INSET B (WELL #14)

UNIONLINE

....

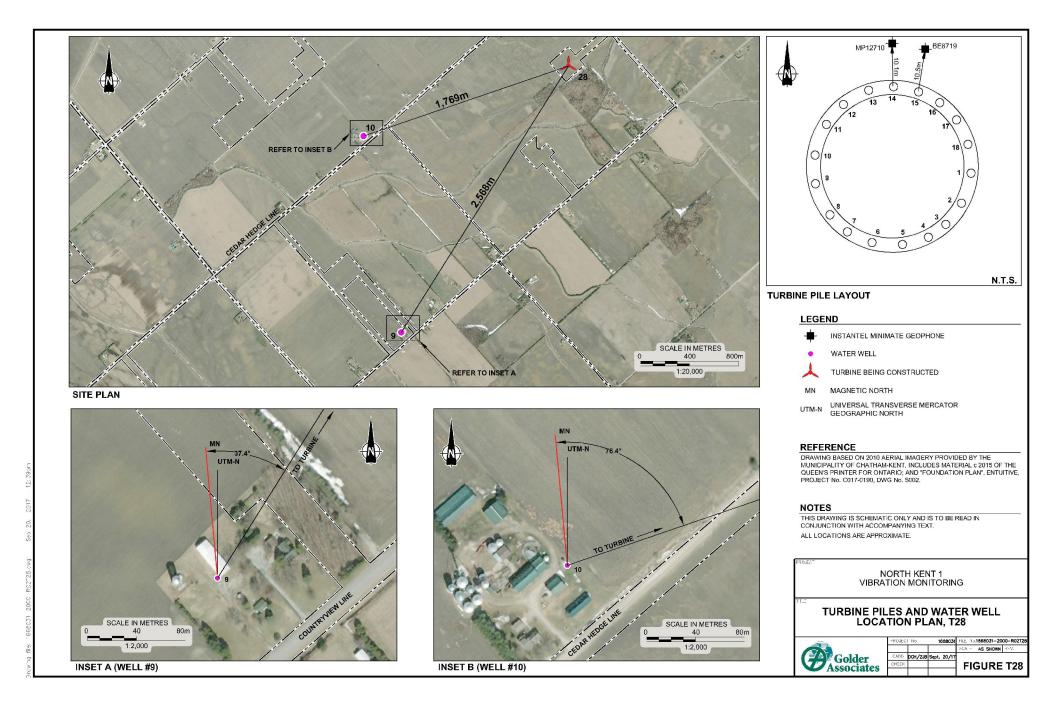
SCALE IN METRES

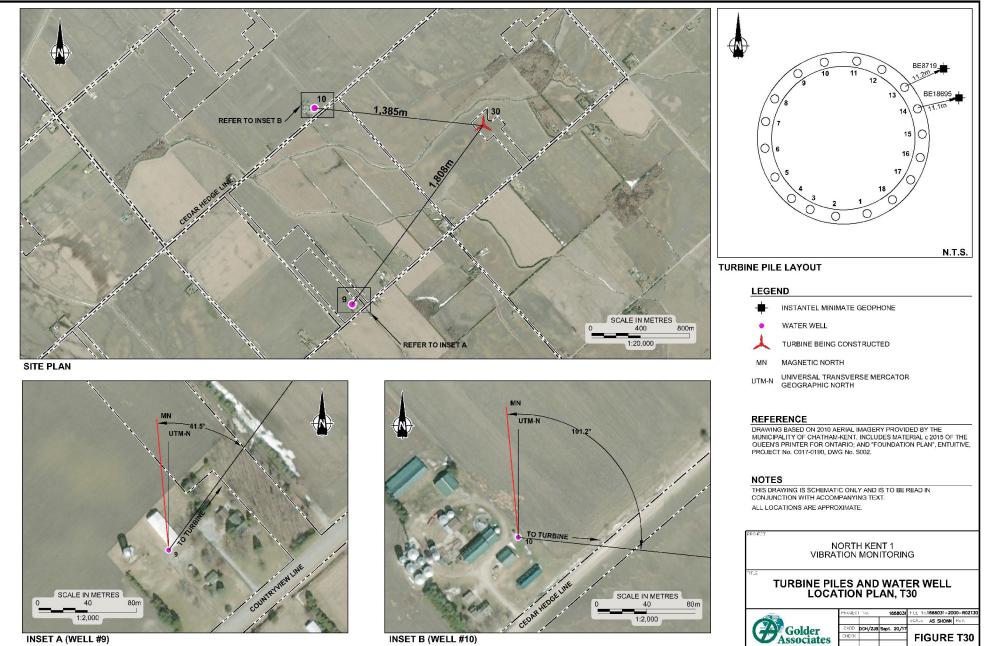
40

1:2,000

80m

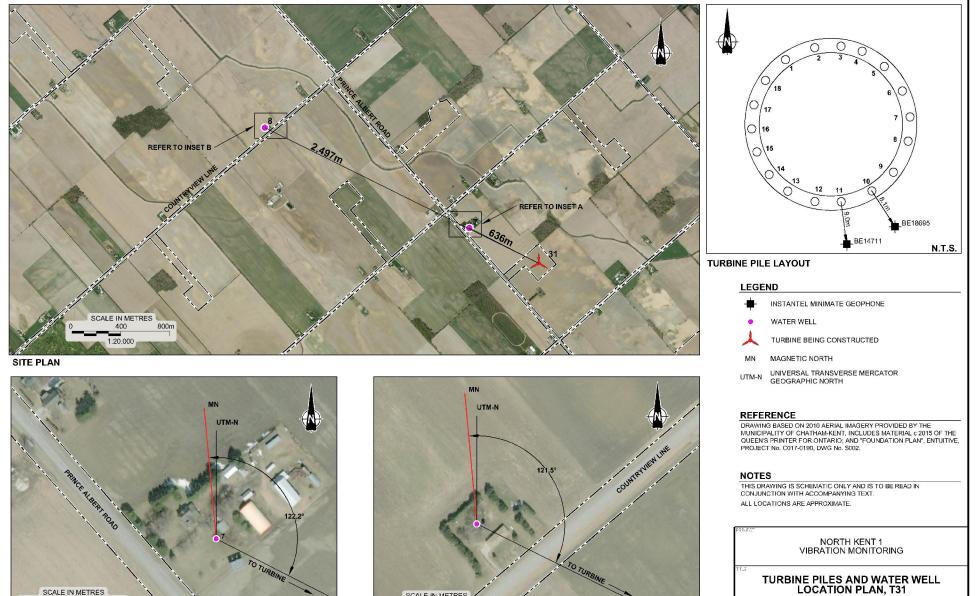
INSET B (WELL #14)


SCALE IN METRES


40

1:2,000

80m


INSET A (WELL #13)

INSET A (WELL #9)

INSET B (WELL #10)

80m

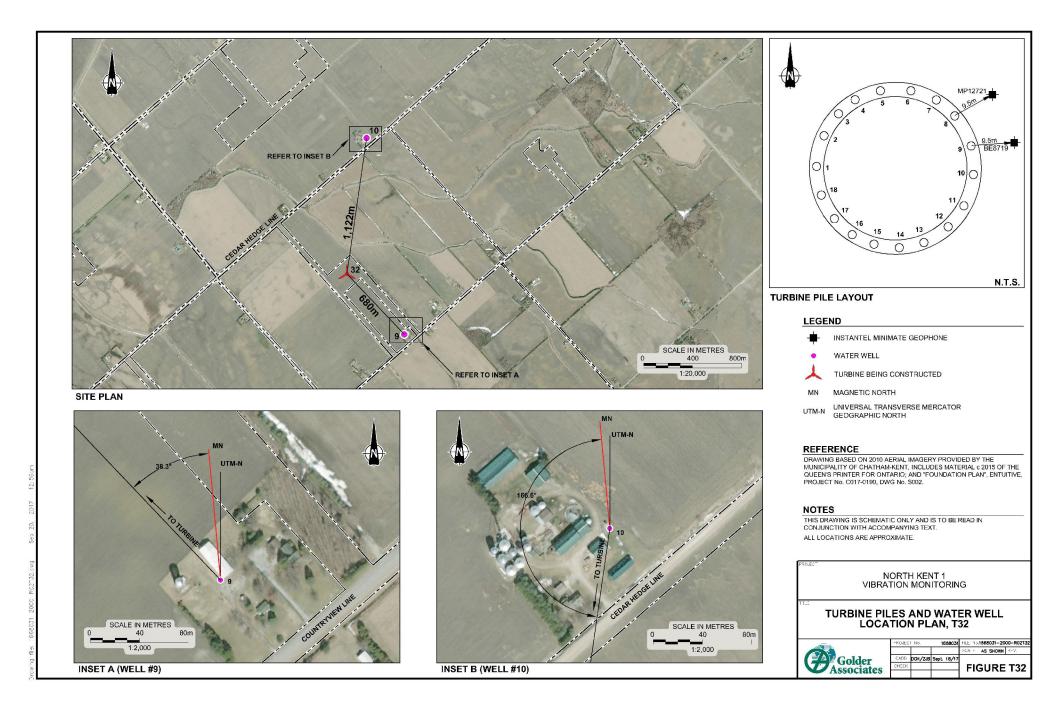
1668031 FILE No. 1668031-2000-R02T3

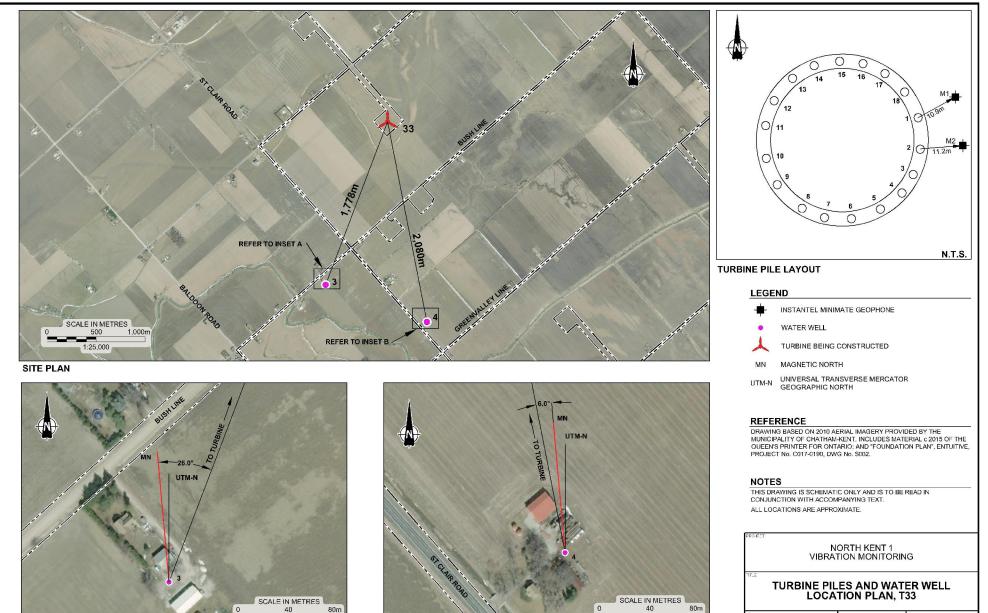
DCH/ZJB Sept. 18/1

HGolder Associates

CALE AS SHOWN TEV.

FIGURE T31

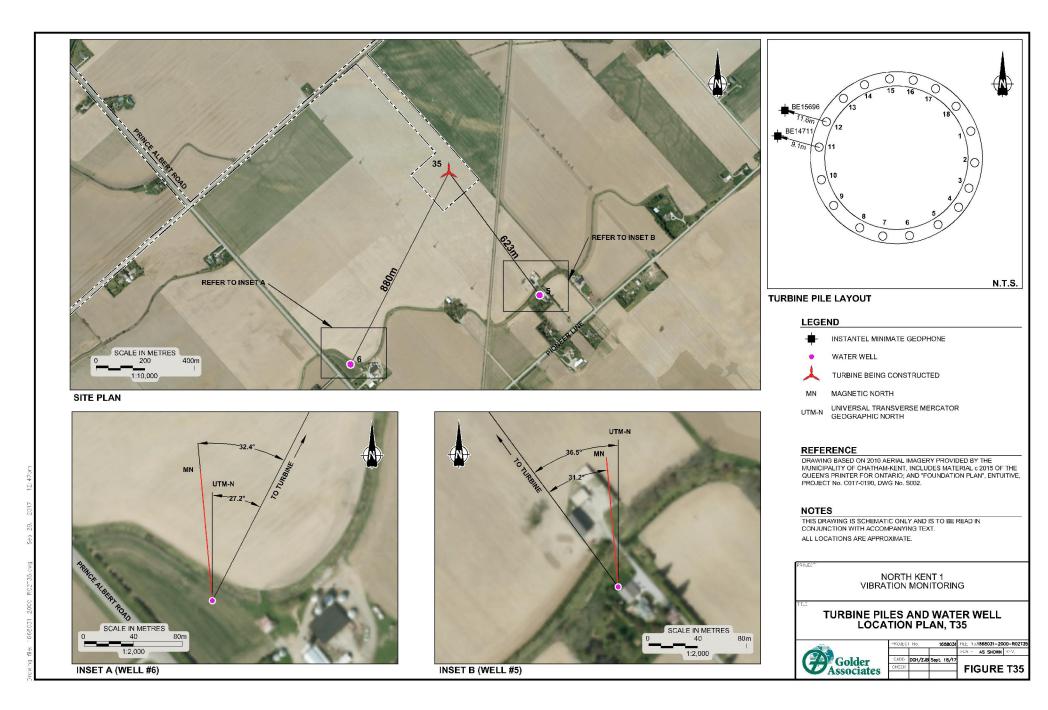

SCALE IN METRES

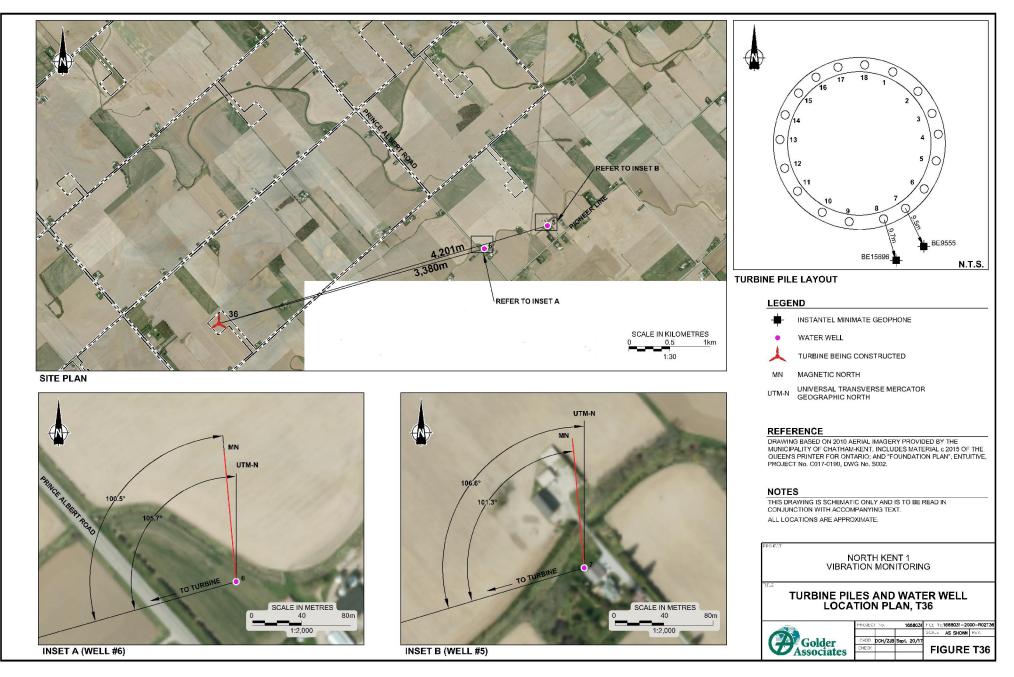

40

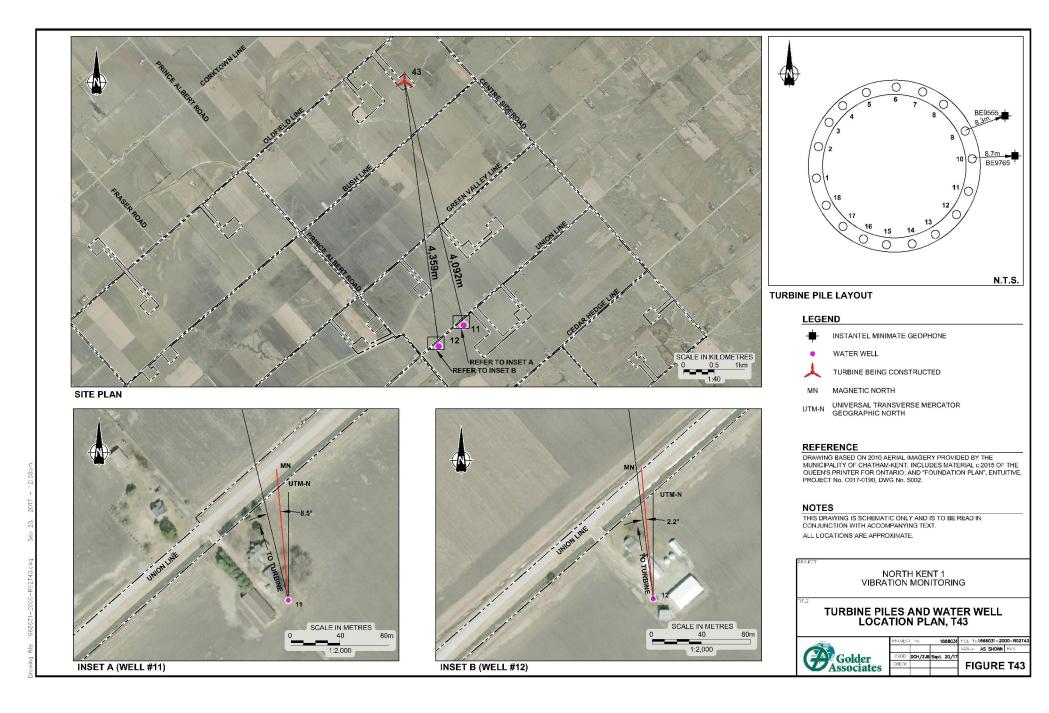
1:2,000

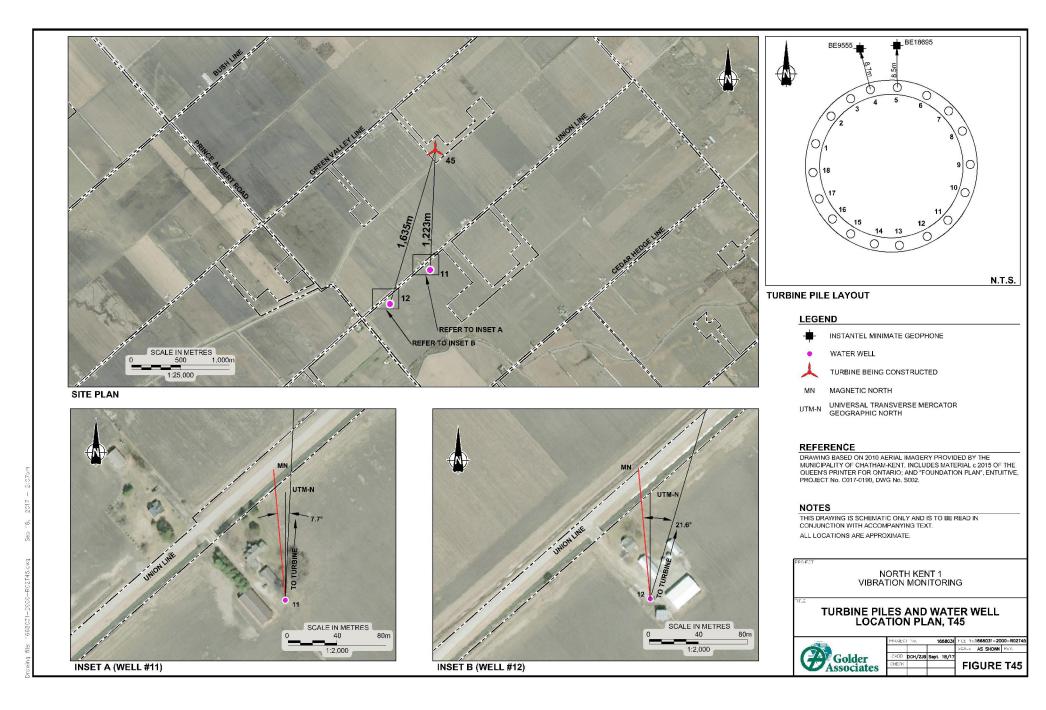
INSET A (WELL #7)

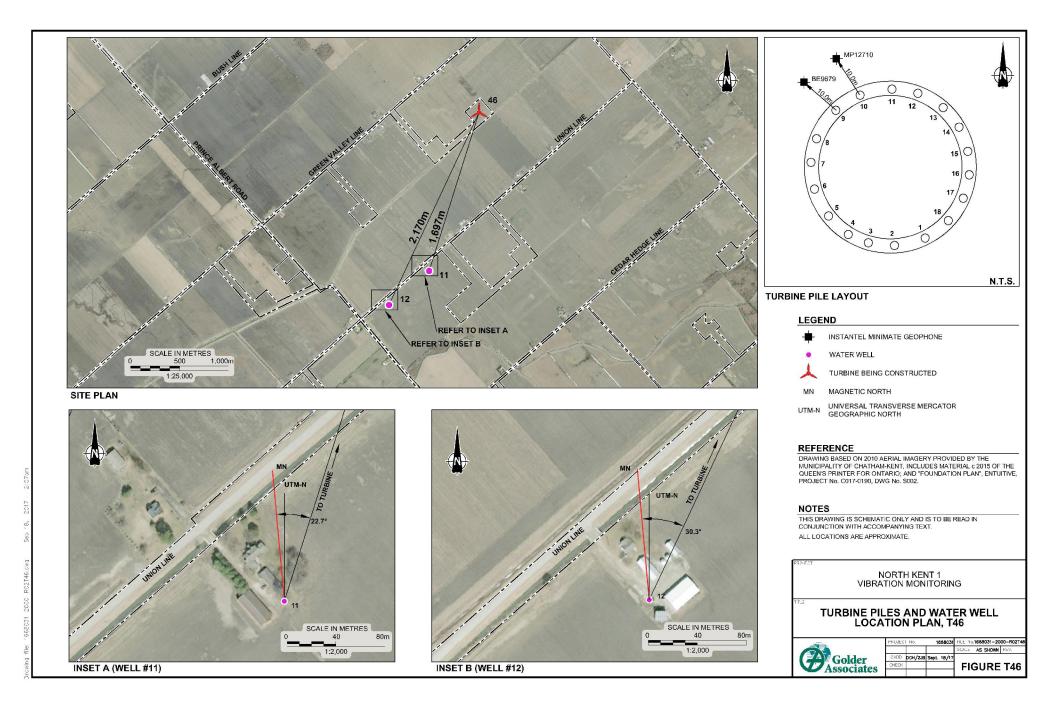
80m

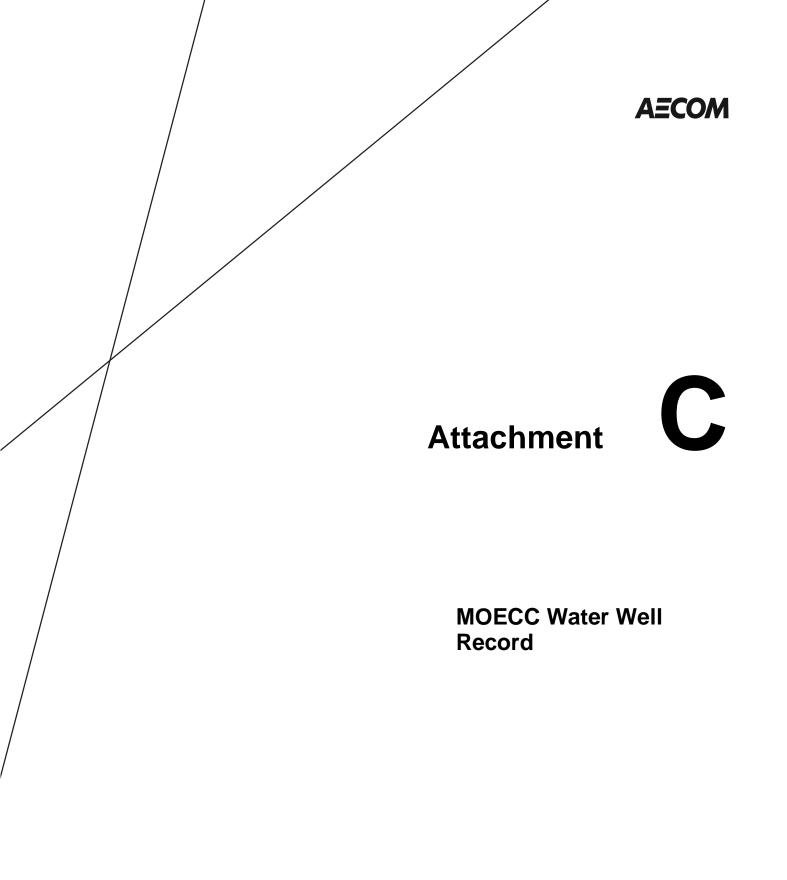


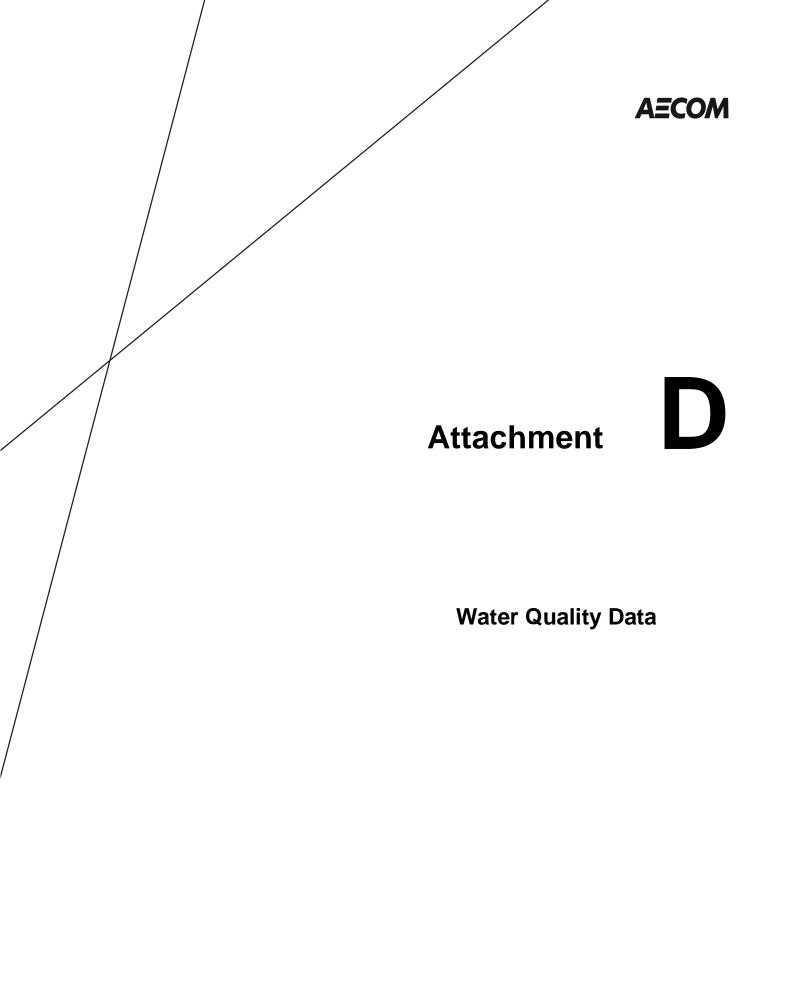

1:2,000


INSET A (WELL #3)


INSET B (WELL #4)


1:2,000





Ministry of the Environm	nent	WA		Ontario Water R WEL	L REC	ORD
Ontario	1. PRINT ONLY IN SPACES PROVIDED 2. CHECK 🔀 CORRECT BOX WHERE J		33083	87	0,0,2 (C,0,N	<u> </u>
COUNTY OR DISTRICT	TOWNSHIP	IOROUGH. CITY. TOWN VILLA	GE	CON BLOCK, TRA		LOT 23-27 9 48-53 MO 11 YR E 6
		7.05.293				
	LOG OF OVE	BURDEN AND BE	DROCK MATERI		NS)	
GENERAL COLOUR CO	MOST DMNON MATERIAL	OTHER MATERIALS		GENERAL DESCRI	PTION	DEPTH - FEET FROM TO
Brown to	psoil					0 2
Brown S.	And					2 10 10 10 61
Islue Cl	ay ston			· · · · · · · · · · · · · · · · · · ·	6	1 62
Black SA	ile Grav	e			6	263
						. •
					· · ·	
		- 10				
		<u></u>				
32 1 2 10 14 15 41 WATER F		ASING & OPEN HC			NG 31-33 DIAMETER	75 80 34-38 LENGTH 39-40
	O OF WATER INSIDE DIAM INCHES	WALL MATERIAL THICKNESS INCHES	DEPTH - FEET FROM TO		YPE DEP OF S	INCHES FEET TH TO TOP 41-44 30 ICREEN
61-62 2 SALTY	H 3 SULPHUR 4 MINERALS 6 GAS	12 STEEL GALVANIZED CONCRETE 188	0 62			FEET
15-18 1 _ FRES 2 _ SALT	H 3 USULPHUR 4 DMINERALS 5 C 6 DGAS	PLASTIC	20-		UGGING & SEALING	CEMENT GROUT
20-23 1 _ FRESI 2 _ SALT	4 MINERALS	STEEL GALVANIZED Concrete Jopen Hole Plastc	62 63	F ROM TO 10-13	14-17	LEAD PACKER, ETC)
25-28 1 [] FRES 2 [] SALT	4 D MINERALS 24-25 4 D MINERALS 24-25 6 D GAS 20	26 STEEL GALVANIZED	27.	30 18 - 21	22-25	
30-33 1 [] FRES 2 [] SALT	H 3 SULPHUR 3480 30 4 WINERALS 4	CONCRETE Dopen Hole Delastic		26-29	30-33 \$0	
71 PUMPING TEST METHOD		DURATION OF PUMPING	17-10 Alber		ION OF WELL	
STATIC EN LEVEL PI	R LEVEL 25 WATER LEVELS DURING MPING	HOURS HOURS	iN	DIAGRAM BELOW SHOW	DISTANCES OF TENERO RTH BY ARROW	
	22-24 IS MINUTES 30 MINUTES 26-20 29-1	711 71	33-37			Caledonia Side Pd
U FEET C	30-41 PUNP INTAKE SET AT	WATER AT END OF TEST	FEET 42		/ V V	
U IF FLOWING. GIVE RATE E RECOMMENDED PUMP TYPE	PUMP		49-49	Tel.	36	
SO-S3	DEEP SETTING 50 FEET	RATE 4	GPM	(Sver)	rx 133 -	
FINAL		ANDONED. INSUFFICIENT SUP ANDONED POOR QUALITY	PLY			
STATUS	I TEST HOLE 7 UN	IFINISHED WATERING				
14/4750	1 DOMESTIC 5 COMMI 2 STOCK 6 MUNIC	IPAL				
	IRRIGATION 7 PUBLIC INDUSTRIAL 0 COOLII OTHER	IG OR AIR CONDITIONING				
	CABLE TOOL					ł
OF	ROTARY (CONVENTIONAL) ROTARY (REVERSE) ROTARY (AIR)	7 DIAMOND 9 JETTING 9 DRIVING				27611
	S AIR PERCUSSION	DIGGING OTHER	DRILLERS REA	SA CONTRACTOR	SP-62 DATE RECEIVED	63-68 80
NAME OF WELL CONTR		LICENCE NUMBE		30	05 JAN 1	3 1989
Y RRI	Pain Count	-	SE			
NO MARUIN	Jo HASTER	Well TECHNICI LICENCE NUMB		WDE		
U SIGNATURE OF TECH	NICIAN/CONTRACTOR	BMISSION DATE	OFF		CSS.S8	
	F THE ENVIRONMENT C	OPY			FORM	NO. 0506 (11/86) FORM 9

CLIENT NAME: AECOM CANADA LTD **105 COMMERCE VALLEY DR.W 7TH FLOOR** MARKHAM, ON L3T7W3 (905) 886-7022

ATTENTION TO: Erin Wilson

PROJECT: 60343599

AGAT WORK ORDER: 17T180137

MICROBIOLOGY ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

WATER ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Jan 30, 2017

PAGES (INCLUDING COVER): 9

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 9

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 17T180137 PROJECT: 60343599

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Erin Wilson

SAMPLED BY:B. M.

Microbiological Analysis (water)

ATE RECEIVED: 2017-01-23					DATE REPORTED: 2017-01-30
				007420039;	
	SA	-	CRIPTION: PLE TYPE:	Water	
		DATE	SAMPLED:	2017-01-20	
Parameter	Unit	G/S	RDL	8142060	
Escherichia coli	CFU/100mL	0	1	NDOGN	
Total Coliforms	CFU/100mL	0	1	NDOGN	

8142060 NDOGN – No Data; Overgrown with non- target, refers to over-crowding microbial growth;

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 17T180137 PROJECT: 60343599

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Erin Wilson

SAMPLED BY:B. M.

				North Kent	- Groundwater Samples
DATE RECEIVED: 2017-01-23					DATE REPORTED: 2017-01-30
	S		CRIPTION: PLE TYPE: GAMPLED:	007420039; Water 2017-01-20	
Parameter	Unit	G/S	RDL	8142060	
Electrical Conductivity	uS/cm		2	548	
рН	pH Units	(6.5-8.5)	NA	8.23	
Total Hardness (as CaCO3)	mg/L	(80-100)	0.5	36.7	
Total Dissolved Solids	mg/L	500	20	292	
Total Suspended Solids	mg/L		10	<10	
Alkalinity (as CaCO3)	mg/L	(30-500)	5	258	
Fluoride	mg/L	1.5	0.05	1.37	
Chloride	mg/L	250	0.10	20.7	
Nitrate as N	mg/L	10.0	0.05	<0.05	
Nitrite as N	mg/L	1.0	0.05	<0.05	
Bromide	mg/L		0.05	0.26	
Sulphate	mg/L	500	0.10	<0.10	
Ammonia as N	mg/L		0.02	0.09	
Dissolved Organic Carbon	mg/L	5	0.5	3.8	
Colour	TCU	5	5	19	
Turbidity	NTU	5	0.5	3.7	
Calcium	mg/L		0.05	9.29	
Magnesium	mg/L		0.05	3.29	
Sodium	mg/L	20 (200)	0.05	114	
Potassium	mg/L		0.05	1.33	
Iron	mg/L	0.3	0.010	0.305	
Manganese	mg/L	0.05	0.002	0.010	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O.Reg.169/03(mg/L)

Mile Munemon

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Guideline Violation

AGAT WORK ORDER: 17T180137 PROJECT: 60343599 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

ATTENTION TO: Erin Wilson

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
8142060	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Colour	TCU	5	19
8142060	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Iron	mg/L	0.3	0.305
8142060	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Sodium	mg/L	20 (200)	114

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60343599

SAMPLING SITE:

AGAT WORK ORDER: 17T180137

ATTENTION TO: Erin Wilson SAMPLED BY:B. M.

Microbiology Analysis

RPT Date: Jan 30, 2017				UPLICATI	E		REFEREN	NCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured						Recovery	Lin	ptable nits	Recovery	Lie	Acceptable Limits	
		ld					Value	Lower	Upper	· ·		Upper		Lower	Uppe				
Microbiological Analysis (water)																			
Escherichia coli	8142038	8142038	ND	ND	NA	< 1													
Total Coliforms	8142038	8142038	ND	ND	NA	< 1													
Comments: ND - Not Detected, NA -	% RPD No	t Applicabl	e																
Microbiological Analysis (water)																			
Escherichia coli	8142104	8142104	NDOGN	NDOGN	NA	< 1													
Total Coliforms	8142104	8142104	NDOGN	NDOGN	NA	< 1													

NA - % RPD Not Applicable

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 5 of 9

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60343599

SAMPLING SITE:

AGAT WORK ORDER: 17T180137 ATTENTION TO: Erin Wilson SAMPLED BY:B. M.

Water Analysis

						-									
RPT Date: Jan 30, 2017			0	UPLICATE	Ξ		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper	-	Lower	Upper
North Kent - Groundwater Sam	ples														
Electrical Conductivity	8142104 8	3142104	550	550	0.0%	< 2	101%	80%	120%	NA			NA		
рН	8142104 8	3142104	8.40	8.27	1.6%	NA	100%	90%	110%	NA			NA		
Total Dissolved Solids	8142038 8	3142038	430	398	7.7%	< 20	98%	80%	120%	NA			NA		
Total Suspended Solids	8142110 8	3142110	< 10	< 10	NA	< 10	96%	80%	120%	NA			NA		
Alkalinity (as CaCO3)	8142104 8	3142104	256	265	3.5%	< 5	96%	80%	120%	NA			NA		
Fluoride	8142066 8	3142066	1.36	1.36	0.0%	< 0.05	94%	90%	110%	106%	90%	110%	95%	80%	120%
Chloride	8142066 8	3142066	21.0	20.6	1.9%	< 0.10	93%	90%	110%	103%	90%	110%	103%	80%	120%
Nitrate as N	8142066 8	3142066	< 0.05	<0.05	NA	< 0.05	94%	90%	110%	107%	90%	110%	101%	80%	120%
Nitrite as N	8142066 8	3142066	< 0.05	<0.05	NA	< 0.05	NA	90%	110%	93%	90%	110%	119%	80%	120%
Bromide	8142066 8	3142066	0.29	0.28	3.5%	< 0.05	106%	90%	110%	102%	90%	110%	84%	80%	120%
Sulphate	8142066 8	3142066	< 0.10	<0.10	NA	< 0.10	94%	90%	110%	99%	90%	110%	96%	80%	120%
Ammonia as N	8142054 8	3142054	0.10	0.10	0.0%	< 0.02	93%	90%	110%	98%	90%	110%	104%	80%	120%
Dissolved Organic Carbon	8142038 8	3142038	2.4	2.2	NA	< 0.5	98%	90%	110%	92%	90%	110%	87%	80%	120%
Colour	8142048 8	3142048	7	7	NA	< 5	98%	90%	110%	NA			NA		
Turbidity	8142038 8	3142038	1.4	1.4	NA	< 0.5	104%	90%	110%	NA			NA		
Calcium	8142038 8	3142038	7.92	8.34	5.2%	< 0.05	102%	90%	110%	101%	90%	110%	99%	70%	130%
Magnesium	8142038 8	3142038	2.43	2.46	1.2%	< 0.05	96%	90%	110%	97%	90%	110%	96%	70%	130%
Sodium	8142038 8	3142038	169	174	2.9%	< 0.05	99%	90%	110%	100%	90%	110%	91%	70%	130%
Potassium	8142038 8	3142038	1.67	1.68	0.6%	< 0.05	99%	90%	110%	100%	90%	110%	99%	70%	130%
Iron	8142038 8	3142038	0.190	0.193	1.6%	< 0.010	105%	90%	110%	100%	90%	110%	105%	70%	130%
Manganese	8142038 8	3142038	0.009	0.009	NA	< 0.002	101%	90%	110%	103%	90%	110%	86%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Mile Mimenian

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 9

Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60343599

AGAT WORK ORDER: 17T180137 ATTENTION TO: Erin Wilson

		ATTENTION TO	
SAMPLING SITE:		SAMPLED BY:B.	Μ.
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis		1	
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration
Water Analysis			
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE
Total Hardness (as CaCO3)	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	QuikChem 10-107-06-1-J & SM 4500 NH3-F	LACHAT FIA
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Colour	INOR-93-6046	SM 2120 B	SPECTROPHOTOMETER
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

CLIENT NAME: AECOM CANADA LTD 105 Commerce Valley Drive West 7th Floor MARKHAM, ON L3T7W3 (905) 886-7022

ATTENTION TO: Jason Murchison

PROJECT: 60343599

AGAT WORK ORDER: 17T270567

MICROBIOLOGY ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Oct 17, 2017

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 8

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 17T270567 PROJECT: 60343599 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Jason Murchison

SAMPLED BY:

North Kent - Microbiological Analysis (water)

DATE RECEIVED: 2017-10-12 **DATE REPORTED: 2017-10-17** 007420039; SAMPLE DESCRIPTION: SAMPLE TYPE: Water 2017-10-11 DATE SAMPLED: G/S 8807888 Parameter Unit RDL Escherichia coli CFU/100mL 0 1 ND Total Coliforms CFU/100mL 0 90 Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to SDWA - Microbiology

Given the interview of the standard for regulatory interpretation.

8807888 ND - Not Detected.

Certified By:

Nivine Basily

Certificate of Analysis

AGAT WORK ORDER: 17T270567 PROJECT: 60343599 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: AECOM CANADA LTD

SAMPLING SITE:

ATTENTION TO: Jason Murchison

SAMPLED BY:

			North Kent	- Groundwater Samples
				DATE REPORTED: 2017-10-17
			007420039;	
SA				
	G/S			
pH Units	(6.5-8.5)	NA		
mg/L	(80-100)	0.5		
mg/L	500	20		
mg/L		10	<10	
mg/L	(30-500)	5	269	
mg/L	1.5	0.05	1.44	
mg/L	250	0.10	20.8	
mg/L	10.0	0.05	<0.05	
mg/L	1.0	0.05	<0.05	
mg/L		0.05	<0.05	
mg/L	500	0.10	<0.10	
mg/L		0.02	0.69	
mg/L	5	0.5	4.2	
Apparent CU	5	5	67	
NTU	5	0.5	10.9	
mg/L		0.05	9.44	
mg/L		0.05	3.32	
mg/L	20 (200)	0.05	116	
mg/L		0.05	1.37	
mg/L	0.3	0.010	0.733	
mg/L	0.05	0.002	0.011	
	Unit US/cm pH Units mg/L	SAMPLE DESC SAMP DATE S Unit G / S UNIT S00 mg/L J Mg/L S00 Mg/L J Mg/L S00 Mg/L S00 Mg/L S00 Mg/L S00 Mg/L S00 Mg/L S0 Mg/L S0 Mg/L S Mg/L S Mg/L S Mg/L S Mg/L	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G/S PH UNITS (6.5-8.5) Mg/L (80-100) Mg/L (80-100) Mg/L 500 Mg/L (30-500) Mg/L 0.05 Mg/L 1.0 Mg/L 1.0 Mg/L 1.0 Mg/L 1.0 Mg/L 0.05 Mg/L 500 Mg/L 0.05 Mg/L 50 Mg/L 50 Mg/L 5 Mg/L 5 Mg/L 0.05 Mg/L 0.05 Mg/L 0.05	2 007420039; SAMPLE DESCRIPTION: 007420039; SAMPLE TYPE: Water DATE SAMPLED: 2017-10-11 Unit G / S RDL gd 8807888 uS/cm 2 540 pH Units (6.5-8.5) NA 8.21 mg/L (80-100) 0.5 37.2 mg/L (80-100) 0.5 37.2 mg/L (80-500) 5 269 mg/L 10 <10

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to O.Reg.169/03(mg/L)

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Inis Verastegui

Guideline Violation

AGAT WORK ORDER: 17T270567 PROJECT: 60343599 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: AECOM CANADA LTD

ATTENTION TO: Jason Murchison

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT G	UIDEVALUE	RESULT
8807888	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Colour	Apparent CU	5	67
8807888	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Iron	mg/L	0.3	0.733
8807888	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Sodium	mg/L	20 (200)	116
8807888	007420039;	O.Reg.169/03(mg/L)	North Kent - Groundwater Samples	Turbidity	NTU	5	10.9
8807888	007420039;	SDWA - Microbiology	North Kent - Microbiological Analysis (water)	Total Coliforms	CFU/100mL	0	90

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60343599

SAMPLING SITE:

AGAT WORK ORDER: 17T270567

ATTENTION TO: Jason Murchison

SAMPLED BY:

Microbiology Analysis

RPT Date: Oct 17, 2017			C	UPLICAT	E	REFERENCE MATERIAL METHOD BLANK			SPIKE	KE MATRIX SPIKE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank N	Blank Measured	Acceptable Limits		Recoverv	Lin	ptable nits	Recoverv	Accep Lim	otable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
North Kent - Microbiological Analysis (water)															

Escherichia coli	8807888 8807888	ND	ND	NA	< 1
Total Coliforms	8807888 8807888	90	81	10.5%	< 1

Comments: ND - Not detected; NA - % RPD Not Applicable

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 5 of 8

Quality Assurance

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60343599

SAMPLING SITE:

AGAT WORK ORDER: 17T270567

ATTENTION TO: Jason Murchison

SAMPLED BY:

			Wate	er An	alys	is								
RPT Date: Oct 17, 2017		C	UPLICATI	E		REFEREN		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	ptable nits	Recovery	Lie	ptable nits
	ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
North Kent - Groundwater Sar	nples													
Electrical Conductivity	8807179	1250	1260	0.8%	< 2	102%	80%	120%	NA			NA		
рН	8807179	8.35	8.21	1.7%	NA	99%	90%	110%	NA			NA		
Total Dissolved Solids	8807888 8807888	318	318	0.0%	< 20	100%	80%	120%	NA			NA		
Total Suspended Solids	8807179	<10	<10	NA	< 10	102%	80%	120%	NA			NA		
Alkalinity (as CaCO3)	8807179	402	403	0.2%	< 5	100%	80%	120%	NA			NA		
Fluoride	8790200	0.41	0.43	4.8%	< 0.05	96%	90%	110%	102%	90%	110%	111%	80%	120%
Chloride	8790200	10.4	9.99	4.0%	< 0.10	91%	90%	110%	109%	90%	110%	109%	80%	120%
Nitrate as N	8790200	<0.05	<0.05	NA	< 0.05	90%	90%	110%	100%	90%	110%	105%	80%	120%
Nitrite as N	8790200	<0.05	<0.05	NA	< 0.05	NA	90%	110%	97%	90%	110%	96%	80%	120%
Bromide	8790200	<0.05	<0.05	NA	< 0.05	104%	90%	110%	107%	90%	110%	89%	80%	120%
Sulphate	8790200	113	112	0.9%	< 0.10	103%	90%	110%	106%	90%	110%	95%	80%	120%
Ammonia as N	8807888 8807888	0.69	0.71	2.9%	< 0.02	105%	90%	110%	95%	90%	110%	95%	80%	120%
Dissolved Organic Carbon	8807179	2.7	2.6	3.8%	< 0.5	103%	90%	110%	106%	90%	110%	99%	80%	120%
Colour	8807179	33	33	0.0%	< 5	107%	90%	110%	NA			NA		
Turbidity	8807134	3.6	3.7	2.7%	< 0.5	100%	90%	110%	NA			NA		
Calcium	8807888 8807888	9.44	9.44	0.0%	< 0.05	95%	90%	110%	95%	90%	110%	94%	70%	130%
Magnesium	8807888 8807888	3.32	3.36	1.2%	< 0.05	97%	90%	110%	97%	90%	110%	97%	70%	130%
Sodium	8807888 8807888	116	116	0.0%	< 0.05	101%	90%	110%	100%	90%	110%	98%	70%	130%
Potassium	8807888 8807888	1.37	1.37	0.0%	< 0.05	100%	90%	110%	99%	90%	110%	98%	70%	130%
Iron	8810249	0.289	0.259	10.9%	< 0.010	94%	90%	110%	93%	90%	110%	82%	70%	130%
Manganese	8810249	0.069	0.065	6.0%	< 0.002	96%	90%	110%	91%	90%	110%	90%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

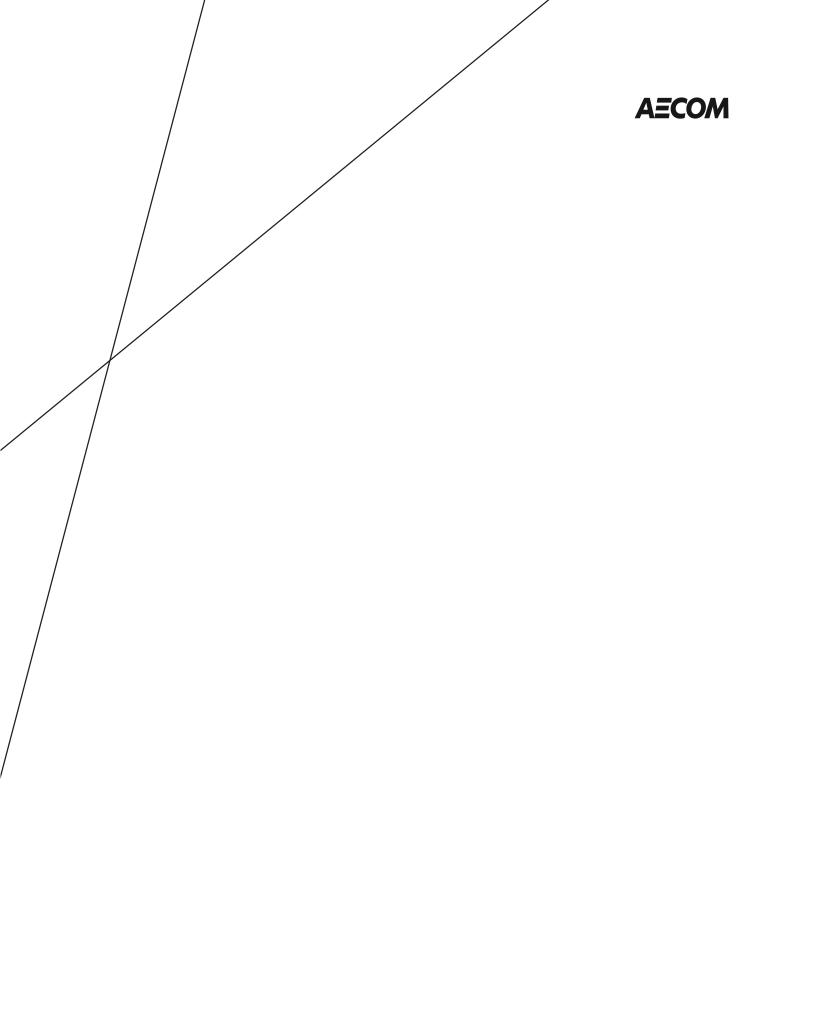
Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 8


Method Summary

CLIENT NAME: AECOM CANADA LTD

PROJECT: 60343599

AGAT WORK ORDER: 17T270567 ATTENTION TO: Jason Murchison

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Microbiology Analysis		·	
Escherichia coli	MIC-93-7010	EPA 1604	Membrane Filtration
Total Coliforms	MIC-93-7010	EPA 1604	Membrane Filtration
Water Analysis			
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE
Total Hardness (as CaCO3)	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Total Dissolved Solids	INOR-93-6028	SM 2540 C	BALANCE
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Fluoride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Bromide	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6002	AMM-002-A & SM 4500 NH3-G	DISCRETE ANALYZER
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Colour	INOR-93-6046	SM 2120 C	SPECTROPHOTOMETER
Turbidity	INOR-93-6044	SM 2130 B	NEPHELOMETER
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

