GAW Nov.4.10 - NOTES 1. Coordinate System: UTM NAD 83 Zone 17 (N). 2. Data Sources: Ontario Ministry of Natural Resources © Queens Printer Ontario, 2009; © Samsung, 2010. Image Source: Grand River Conservation Authority © First Base Solutions, 2010 Imagery Date: Spring 20 LIDAR IMAGERY SOURCE??? 4. Produced using the Version 3 site plan provided by Sar issued on October 18, 2010 #### Client/Project SAMSUNG C&T GRAND RENEWABLE ENERGY PARK Figure No. FIELD MAP 6 **TRANSMISSION LINE -MAPBOOK** | Stantec | 70-1 South | | | Asses | Habitat
ssment | |------------------------|------------|------------|-------------|--------------------|--------------------------------| | Project Number | 61010646 | party) | Project Nar | ne:
Samsuns | | | Date / Time: | v.4.10 | The second | Field Perso | onnel: GAW | J | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last
24 hrs:
Rain | Reptile Hibernacula Features i.e. features that would provide a route underground, including buried concrete or rock (e.g. foundations, bridge abutments or culverts with cracks/entry points, exposed rock crevices or inactive animal burrows) Does the site contain potential reptile hibernacula features? Yes No (if yes, describe details in Table 1). Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, describe details in Table 1). Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |-----------------|---|---------|-----------------------|--------------------------------------| | Tart El concorr | r Hall John ga | | | | | 19 - 1 | : t-1 | | terva sanjuga lehipat | = | | | *************************************** | | | | ## **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | | | - / | | | | =-= | | | | | Approx | cimate a | ge of st | and / | Matur | e | | | | | |---|--|---|---|--------------------------|---------------------------------|----------------|--|---|--------------------------| | | | | | | | - 5 | | | | | If yes, a | approxim | ate # pr | esent or | % of s | stand <u>Fe</u> | w seer | etc) <u>Fro</u> | n edge | | | If yes pro | ags pres
ovide chara
oose bark
al large | acterizatio | n of numb | oer pres | | and DBH | of snags ar | nd indicate if | f they | | Trees v | with cav | ities pre | esent? [|] No [| Rare | Occasi | onal Ab | undant No | me Seen | | | The mon | Height r
tree | anges of | Range
DBH | e of Tree | Range
Heigh | e of Cavity
ts | Cavity siz
(approx.
diameter) | | | | | II STEEL | | 1 1 1 | | | | 2 14 | | | | | - N | | ł | | | | 1 | | | | | 1111 | | 4.50 | | 1 | | | | | Preser | UTM and | rge stic
I describ | k nests | | or nests)?
ight and p | | □ No
in tree, si | None
ze of nest | * | | Preser If yes, species | uce of la
UTM and
s present | rge stic
d describ
t
sturban | k nests
be tree ty | /pe, he | ight and p | osition | | ze of nest | | | Preser If yes, species Evider If yes, | uce of la
UTM and
s presen
ice of di
describe | rge stic
I describ
t
sturban | k nests be tree ty | logging, r | ight and p | ATV use, | in tree, si | ze of nest | ,
o , | | Preser If yes, species Evider If yes, | uce of la
UTM and
s present
ace of di
describe | rge stic
I describ
t
sturban | k nests be tree ty | logging, r | ight and posterior oads, paths, | ATV use, | in tree, si | ze of nest
Yes □ No | | | Preser If yes, species Evider If yes, Seeps | uce of la
UTM and
s present
ace of di
describe | rge stic
d describ
t
sturban
Possi | k nests be tree ty | /pe, he | ight and posterior oads, paths, | ATV use, | in tree, size trails) | ze of nest
Yes □ No | ,
o , | | Preser If yes, species Evider If yes, Seeps | uce of la
UTM and
s present
ace of di
describe | rge stic
d describ
t
sturban
Possi | k nests be tree ty | /pe, he | ight and posterior oads, paths, | ATV use, | in tree, size trails) | ze of nest
Yes □ No | ,
o , | | Preser If yes, species Evider If yes, Seeps Seep/Sp | ce of la UTM and s present ce of di describe springs ring # | rge stic describ t sturban Possi s preser UTM Present | k nests be tree ty ce? (i.e) hy qu nt? Yes | ogging, razed Yes Descr | oads, paths, No iption | ATV use, | trails) yes, Surrounding | Yes Note Note Note Note Note Note Note Note | nknown | | Preser If yes, species Evider If yes, Seeps | uce of la
UTM and
s present
ce of di
describe
springs | rge stic describ t sturban Possi s preser UTM Present | k nests be tree ty ce? (i.e. | ogging, razed Yes Descr | ight and posterior oads, paths, | ATV use, | in tree, size trails) | Yes No Habitat Unkn | nknown | | Preser If yes, species Evider If yes, Seeps Seep/Sp | ce of la UTM and s present ce of di describe springs ring # | rge stic describ t sturban Possi s preser UTM Present | k nests be tree ty ce? (i.e) hy qu nt? Yes | ogging, razed Yes Descr | oads, paths, No iption | ATV use, | trails) yes, Surrounding Presence of emergent/s | Yes No Habitat Unkn | nknown own Presence of | | | ELC | SITE: | 161010 | 2646 | | POLYGON: (17 |) | |--|--|--|----------------------------------|--
---|---|---| | | OMMUNITY | SURVEY | OR(S): | SAW | DATE: NOV. | 4.10 | UTME: | | | SCRIPTION &
ASSIFICATION | START: | | END | 1 30 | UTMZ: | UTMN: | | <u>-</u> | LYGON DES | CRIPT | TION | | | | | | _ | SYSTEM | | TRATE | TOPOGRAPHIC FEATURE | HISTORY | PLANT FORM | | | h | ERRESTRIAL
VETLAND
DUATIC | AND MINERAL SOIL TIC PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. CARB. BEDRK. | | LACUSTRINE RIVERINE, BOTTOMIAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND CLIFF | MATURAL CULTURAL | PLANKTON SUBMERGED FLOATING-LVD. GRAMINOID FORB LICHEN BRYOPHYTE DOCIDIOUS CONIFEROUS | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG BARREN | | | SITE | | | TALUS CREVICE / CAVE ALVAR | COVER | MIXED | MEADOW PRAIRIE THICKET | | 3 | PEN WATER
HALLOW WATER
URFICIAL DEP
EDROCK | | | ROCKLAND BEACH / BAR SAND DUNE BLUFF | OPEN SHRUB TREED | | SAVANNAH WOODLAND FOREST PLANTATION | | ij | AND DESCR | ИРТІО
НТ | N:
CVR | SPECIES
(>> MUCH GREA | IN ORDER OF | DECREASING | OMINANCE
BOUT EQUAL TO) | | 1 | CANOPY | 1-2 | 4 | FRAPENN > | > Querco | S | | | , | SUB-CANOPY | 3 | 3 | // | " | | | | ١ | UNDERSTOREY | 4-5 | 3 | " | 1 5 | W. LEWIS | | | | GRD. LAYER
CODES: | 1=>25 | m 2 = 10< | -1T-,25 m 3 = 2 <ht<10 r<="" td=""><td>n 4=1<ht-2m 5="</td"><td>0.5<ht.1 8="0.2<</td" m=""><td>17:0.5 m 7 = HT<0.2 m</td></ht.1></td></ht-2m></td></ht<10> | n 4=1 <ht-2m 5="</td"><td>0.5<ht.1 8="0.2<</td" m=""><td>17:0.5 m 7 = HT<0.2 m</td></ht.1></td></ht-2m> | 0.5 <ht.1 8="0.2<</td" m=""><td>17:0.5 m 7 = HT<0.2 m</td></ht.1> | 17:0.5 m 7 = HT<0.2 m | | ••• | | 0= NON | E 1=0% < | CVR < 10% 2= 10 < C | VR . 25% 3= 25 < C | VR . 60% 4= CVR > t | U79 | | | AND COMPO | | | CVR < 10% 2= 10 < C | VR - 25% 3= 25 < C | VR . 60% 4= CVR > 6 | BA: | | 1 | est in a second | SITION | | CVR < 10% 2= 10 < C | A 10 - 24 | VR . 80% 45 CVR > 6 | BA: | | 1 | AND COMPOS | SITION: | | | VR . 25% 3= 25 < C | 4 A 25 - 50 | BA: > 50 | | | AND COMPOSE CLASS AN | SITION:
ALYSIS
GS: | | < 10 < 10 < 10 < 10 < 10 | A 10 - 24 | A 25 - 50
4 25 - 50
4 25 - 50 | BA: > 50 | | | AND COMPOS | SITION:
ALYSIS
GS:
GS: | | < 10 < 10 < 10 < 10 < 10 | A 10 - 24 | 4 25 - 50
4 25 - 50
0 OCCASIONAL A | BA: > 50 | | T T | AND COMPOSE CLASS AND ANDING SNA | SITION:
ALYSIS
GS:
GS: | | < 10 < 10 < 10 N = NONE · . R | A 10 - 24 | 1 A 25 - 50 4 25 - 50 CCASIONAL A | BA: > 50 | | TOPE | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD | SITION:
ALYSIS
GS:
GS:
ES: | 3: 1 ₁₁ | <10 <10 <10 N = NONE · R YOUNG | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE | 1 A 25 - 50 4 25 - 50 CCASIONAL A MATURE | BA: > 50 | | STORE | AND COMPOSE
ZE CLASS AN
ANDING SNA
EADFALL / LO
JUNDANCE COD
DMM. AGE : | SITION:
ALYSIS
GS:
GS:
ES: | 3: 1 ₁₁ | C < 10 N = NONE | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 26 MID-AGE | 1 A 25 - 50 4 25 - 50 CCASIONAL A | BA: > 50 | | STORE | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: DISTURE: | SITION: ALYSIS GS: GS: ES: | PIONEE | | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 35 MID-AGE OTTLES / GLEY RGANICS: | 1 A 25 - 50 4 25 - 50 CCASIONAL A MATURE | BA: > 50 | | TILLIA | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: | SITION: ALYSIS GS: GS: ES: | PIONEE | | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 35 MID-AGE OTTLES / GLEY RGANICS: | 1 A 25 - 50 4 25 - 50 CCASIONAL A MATURE | BA: > 50 | | T CONTRACTOR OF THE CO | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOU | ALYSIS GS: GS: ES: IS: | PIONEE | <pre></pre> | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 35 MID-AGE OTTLES / GLEY RGANICS: | 4 25 - 50 4 25 - 50 OCCASIONAL A MATURE | BA: > 50 | | T THE CONTRACTOR | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: DIL ANALYS EXTURE: DMOGENEOU OMMUNITY COMMUNITY COMMUNIT | SITION: ALYSIS GS: GS: ES: IS: CLASS LASS: | PIONEE ARIABLE SUFFICAT | <pre></pre> | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 34 | 4 25 - 50 4 25 - 50 OCCASIONAL A MATURE | BA: > 50 | | T THE CONTRACTOR | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: DMOGENEOU
OMMUNITY COMMUNITY COMMUNITY COMMUNITY SI | GS: GS: ES: IS: CLASS LASS: ERIES: | PIONEE ARIABLE SIFICAT SWA Deci | O < 10 < 10 < 10 N = NONE · R YOUNG DEPTH TO MC DEPTH TO BE ION: | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 25 MID-AGE MID-AGE DTTLES / GLEY CRANICS: | A 25 - 50 25 - 50 | BA: > 50 > 50 > 50 > 50 SO SO SO SO SO SO SO SO | | ST S | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: DIL ANALYS EXTURE: DMOGENEOU OMMUNITY COMMUNITY COMMUNIT | GS: GS: GS: ES: IS: CLASS LASS: ERIES: | PIONEE ARIABLE SUFFICAT | O < 10 < 10 < 10 N = NONE · R YOUNG DEPTH TO MC DEPTH TO BE ION: | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 25 MID-AGE MID-AGE DTTLES / GLEY CRANICS: | A 25 - 50 | BA: > 50 > 50 > 50 > 50 SO SO SO SO SO SO SO S | | ST SI SI M | AND COMPOSE ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOU OMMUNITY COMMUNITY COMMUNITY SI COSITE: AS | GS: GS: GS: ES: US: US: VPE: | PIONEE ARIABLE SIFICAT SWA Deci | O < 10 < 10 < 10 N = NONE · R YOUNG DEPTH TO MC DEPTH TO BE ION: | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 25 MID-AGE MID-AGE DTTLES / GLEY CRANICS: | A 25 - 50 | BA: > 50 > 50 > 50 > 50 SOUNDANT OLD GROWTH G= (cm) SWD SWD SWD2 | | ELC | SITE: Transmission Line | |------------------|-------------------------| | | POLYGON: Feature 1 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | | LAYER | | COLL. SPECIES CODE | | 酱 | LA | YER | | COLL | | |--------------|---------|----------|----------|--------------------|--------------|--------------|-----|-----|-----|------|--------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | FRAPENN | D | D | A | | 4 4 | TYPANGU | | -(4 | | -4 | | | Quercus | A | A | Α | | | Sedges | 1 | | | | | | | | | | | | Grasses | | | | | | | | | | | | 4-3-1 | Asters | П | | - 3 | | | | | | | | | (C | Goldenrods | | | | | | | | | | | | | | | | | = 3 | | | | | | | QUI | | | | | | | | | | | | | _1 | | | 19 | 5.0 | | | | | | 22 | | | | | | | | | | | | | | + | | | | | | | | | | | | | | | - | | | | | | | | | | | + | | <u> </u> | | | | | | | | | | | + | | - | | | | | | | | | | | +- | \vdash | - | | | | + | - | - | | | | | + | - | - | | | | ╁ | | - | | | | | ╁ | | | | | | - | - | - | | | | | | - | - | | | | - | | - | | | | | | - | - | | | | | | - | | | | | - | - | | - | | | - | | | | | | | + | - | - | | | | + | | | | | | 3-2-1-1-1392 | - | - | \vdash | | E. Hillinger | | - | 179 | - | | ALL! | | | - | _ | | | 3 11= | | - | - | | | | | ES (011/2 | | | | | | | | | 139 | 1 | | | | \perp | _ | <u> </u> | | | | | _ | L_ | _ | | | | | <u> </u> | 123 | | | =V=X** | | | | | - 1/11 | | | | 2 | | | | | - | | | 174 | | Page of Possible grazing Fringe of maple-beech at road in west patch. One large beech snag in med. cavity. | ELC | SITE: | 1 | | | POLYGON: (9) |) | | |--|--|----------------------------------
--|--|---|---|---------------| | COMMUNITY DESCRIPTION & | SURVE | YOR(S): | | DATE: | | UTME: | 1 | | CLASSIFICATION | START | | END | | UTMZ: | UTMN: | | | POLYGON DES | SCRIP | TION | | | | | | | SYSTEM | SUB | STRATE | TOPOGRAPHIC FEATURE | HISTORY | PLANT FORM | COMMUNITY | | | TERRESTRIAL WETLAND AQUATIC | ORGANIC MINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. | | LACUSTRINE RIVERINE BOTTOMIAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND CLIFF | MATURAL ☐ CULTURAL | PLANKTON SUBMERGED FLOATING-LVD. FROATING-LVD. FORB LICHEN SRYOPHYTE | LAKE POND RIVER STREAM MARSH SWAMP FEN SOG | | | SITE | ☐ CAR | B. BEDRK. | TALUS CREVICE / CAVE | COVER | CONIFEROUS MIXED | BARREN MEADOW PRAIRIE | | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | | | ROCKLAND BEACH / BAR SAND DUNE BLUFF | OPEN SHRUB | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | in the | | STAND DESCR | IPTIO | N: | | | | | | | LAYER | нт | CVR | | | ECREASING DOI
EATER THAN; = ABO | | | | 1 CANOPY | 1-2 | 4 | FRAPENN | 18 18 分 | The legislation | | | | 2 SUB-CANOPY | 3 | 4 | // >> VI | MAMER | DMI II- | | 9 | | 3 UNDERSTOREY | 4-5 | 4 | CORSTOL | F To Park | | | | | | | | | | | | | | GRD. LAYER HT CODES: CVR CODES | 1 = >25 m
0= NONE | | | n 4 = 1<+17-2 m 5 = 1 | 0.5 <ht-1 8="0.2<HT-<br" m="">R < 60% 4= CVR > 60%</ht-1> | | | | IT CODES: | 1 = >25 n
0= NONE | | T:25 m 3 = 2 <ht 10="" m<="" td=""><td>n 4 = 1<+17-2 m 5 = 1</td><td></td><td></td><td></td></ht> | n 4 = 1<+17-2 m 5 = 1 | | | | | T CODES:
CVR CODES | 1 = >25 n
0= NONE | 1= 0% < | T:25 m 3 = 2 <ht 10="" m<="" td=""><td>n 4 = 1<+17-2 m 5 = 1</td><td></td><td></td><td></td></ht> | n 4 = 1<+17-2 m 5 = 1 | | | | | T CODES:
CVR CODES | 1 = >25 n
0= NONE
ITION: | 1= 0% < | 17:25 m 3 = 2 <h7:10 n<br="">CVR : 10% 2= 10 < C</h7:10> | n 4 = 1 <ht⊲2 5="1<br" m="">VR √25% 3= 25 < CV</ht⊲2> | R < 60% 4= CVR > 60% | BA: | 3 No | | T CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC | 1 = >25 m
0= NONE
ITION:
ALYSIS:
SS: | 1= 0% < | A < 10 < 10 < 10 < 10 | A 10 - 24 10 - 24 | R < 60% 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | BA: > 50 > 50 > 50 | 3 No | | TODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG | 1 = >25 m
0= NONE
ITION:
ALYSIS:
SS: | 1= 0% < | A < 10 <p>A < 10</p> A < 10 N = NONE R = RONE | A 10 - 24 10 - 24 RARE 0 = 0 | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50 | BA: > 50 | Z No | | T CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC | 1 =>25 n
0= NONE
SITION:
SS:
SS:
SS: | 1= 0% < | A < 10 <p>< 10</p> A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 - 24 10 - 24 10 - 24 RARE 0 = 0 | R < 60% 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | BA: > 50 > 50 > 50 | Z No
S Acc | | TCODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: SOIL ANALYS! EXTURE: WOISTURE: | 1=>25 n
0= NONE
ITTION:
ILYSIS:
ISS:
ISS:
ISS: | PIONEEI | A < 10 < 10 < 10 N = NONE : R YOUNG DEPTH TO MO DEPTH OF OR | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE TILES / GLEY GANICS: | 25 - 50
25 - 50
25 - 50
25 - 50
26 - 50
25 - 50
26 - 50
27 - 50
28 - 50
28 - 50
29 - 50
29 - 50
20 - 50
20 - 50 | BA: > 50 > 50 > 50 BUNDANT OLD GROWTH G= (cm) | Z No
Z Acc | | TCODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: SOIL ANALYSI EXTURE: | 1=>25 n
0= NONE
ITTION:
ILYSIS:
ISS:
ISS:
ISS: | PIONEEI | A < 10 < 10 < 10 N = NONE - R YOUNG | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE TILES / GLEY GANICS: | 25 - 50
25 - 50
25 - 50
25 - 50
26 - 50
25 - 50
26 - 50
27 - 50
28 - 50
28 - 50
29 - 50
29 - 50
20 - 50
20 - 50 | > 50 > 50 > 50 | Z No
3 Acc | | AT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYS! TEXTURE: HOMOGENEOUS COMMUNITYC | 1=>25 m
0= NONE
SITION:
ALYSIS:
SS:
SS:
SS:
SS:
LASSI | PIONEEI | A | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE TILES / GLEY GANICS: | 25 - 50
25 - 50
25 - 50
25 - 50
26 - 50
25 - 50
26 - 50
27 - 50
28 - 50
29 - 50
20 5 | BA: > 50 > 50 > 50 SO > 50 SROWTH G= (cm) (cm) | Z No
S Acc | | TODES: CVR CODES STAND COMPOS STANDING SNAG | 1=>25 m
0= NONE
SITION:
ALYSIS:
SS:
SS:
SS:
LASSI | PIONEEI RIABLE FIGATIO | A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10
< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 | A 10 - 24 10 - 24 10 - 24 10 - ARRE 0 = C MID-AGE TTLES / GLEY GANICS: DROCK: | 25 - 50
25 - 50
25 - 50
25 - 50
CCASIONAL A = A
MATURE | BA: > 50 > 50 > 50 | 2 No
3 Acc | | AT CODES: CVR CODES STAND COMPOS STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYS! EXTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEI | 1=>25 m 0= NONE ITTION: ILYSIS: ISS: ISS: ITTION: ILYSIS: ILYS | PIONEEI PIONEEI PIONEEI Decic | A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE TILES / GLEY GANICS: DROCK: | 25 - 50 25 - 50 25 - 50 25 - 50 26 - 50 26 - 50 27 - 50 28 - 50 29 - 50 20 - 5 | BA: > 50 > 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm) | 3 No | | ATTODES: CVR CODES STAND COMPOS STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEE COMMUNITY SEE COMMUNITY SEE COMMUNITY SEE COMMUNITY SEE COMMUNITY SEE COSITE: AS | 1=>25 n
0= NONE
SITION:
SS:
SS:
SS:
SS:
SS:
SS:
SS:
S | PIONEEI RIABLE FIGATIO | A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 | A 10 - 24 10 - 24 10 - 24 10 - ARRE 0 = C MID-AGE TTLES / GLEY GANICS: DROCK: | 25 - 50 25 - | BA: > 50 > 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm) | Z No
S Acc | | AT CODES: CVR CODES STAND COMPOS STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYS! EXTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEI | 1=>25 m
0= NONE
SITION:
SS:
SS:
SS:
SS:
SS:
SS:
SS:
SS:
SS:
S | PIONEEI PIONEEI PIONEEI Decic | A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <
10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TILES / GLEY GANICS: DROCK: | 00 | BA: > 50 > 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm) | Z No. | | ATTODES: EVEN CODES STAND COMPOS STAND COMPOS STANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: SOIL ANALYSI: TEXTURE: MOISTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEE ECOSITE: AS VEGETATION TY | 1=>25 m on Nessell 1 | PIONEEI PIONEEI PIONEEI Decic | A < 10 A < 10 CVR 10% 2=10 < C A < 10 A | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TILES / GLEY GANICS: DROCK: | 00 | BA: > 50 > 50 > 50 BUNDANT OLD GROWTH G= (cm) (cm) | Z No. | | ELC | SITE: T- Line | | |---------|---------------------|--| | PLANT | POLYGON: Feature 19 | | | SPECIES | DATE: | | | LIST | SURVEYOR(S): | | | SPECIES CODE | 7,175
7,175 | LA | YER | RE 0 = OCCASIONAL / | | THE PLANE SHOW OF | ~ | LA | | × | - 145 | |--------------|----------------|----|-----|---------------------|--------|-------------------|----|----|---|------|-------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL. | SPECIES CODE | 1 | _ | 3 | 4 | co | | FRAPENN | D | P | | | | | + | | | | | | JLMAMER | | A | 200 | - 1 | | | 1 | | | | _ | | CERUBR | R | | | | | | | | | | 110 | | | | | | | | | - | | | =7/1 | | | | | | | | =1== | | | | | | | | ORSTOL | | - | 0 | | | | | | | | | | -110102 | | | U | | | | H | | - | - | | | | | | | | | | | | | | | | | | | SA. | - | | | | | | _ | | | | | | | | | | H | + | + | + | | | | | | | \Box | 1 | <u> </u> | | | | | | | | - | + | - | + | | | | | - | - | | | | | | | | | | | + | + | + | | | (| _ | | | \perp | | | y. | | 1 | | | | | + | | + | | 4 | | | + | + | + | | | | | | | | | | | 1 | | + | | | ET DIVINE | | | | + | 20045E | | Ų. | | | | N | | | + | | + | | | | | + | + | | | | | | | | | | | | | | + | | | | | 1 | 1 | 1 | | | | | | | | | RUE | | | | | | | - | | - | | | | 70-1 South
Guelph, Oi
N1G 4P5
Tel: (519) | ngate Drive
ntario, Canada
836-6050 | | FEATURE 2 Wildlife Assess Polygon 9 | Habitat | |---|--|--|---|--| | 161010646 | | Project Name | e: Samsung - | T-Line | | ov 4.10 | | Field Person | nel: GAW | | | Temp: | Wind: | Cloud: 100% | PPT:
light rain | PPT in last
24 hrs:
RAIN | | | | | te underground, inclueracks/entry points, ex | | | | 70-1 South
Guelph, O
N1G 4P5
Tel: (519)
Fax: (519) | Tel: (519) 836-6050 Fax: (519) 836-2493 161010646 ov 4.10 Temp: Wind: 10° 2 | 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Fax: (519) 836-2493 Project Name Ib 1010 b 4 b | 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Fax: (519) 836-2493 Project Name: Samsung Field Personnel: GAW Temp: Wind: Cloud: PPT: | Table 1: Potential bat/reptile hibernacula features identified on site Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, | UTM | a 251 | Feature
type | Photo # | Description | Species
observed using
feature | |-----|-------|-----------------|---------|-------------|--------------------------------------| | | | | | | S . | | | | | | | | | | | | | | | Unknown **Species Observations** describe details in Table 1). describe details in Table 1). List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, OP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | | | | | | - A | | | | | | | Approxima Are large (i. | е. >40
xim a | ocmDBH a | and >25m ta
esent or | all) tree
% of s | es presentand <u>Ver</u> | y rare | (~1) | | | |-----------------|--|---|---|-------------------------|---------------------|----------------------------------|-------------|---|-------------------------------------|--| | | Are snags of the s | prese | ent? [2 | ☑ Yes ☐ I | No
er pres | ent, height | and DB | H of snags an | d indicate if | f they | | | Trees with | cavi | ties pre | esent? [|] No [| Rare 🗀 | Occas | sional 🗌 Abu | | ne seen | | | | | Height tree | ranges of | Range
DBH | of Tree | Ran
Heig | ge of Cavity
hts | Cavity siz
(approx.
diameter) | | | | | p=11 | de. | to upon | ==-, | 5 | | | | | | | 1 | | | | | | 11 | | | | | | | - 1 | | | | | 1944 | | 150 | 1 | | BA ⁻ | T MAT Roos | | | | <i>(</i> : | . 10 | | | | | | BA- | Presence of the species pre | of lar
and | r ge stic
describ | k nests | | | | | ze of nest | | | BA | Presence of the second | of lar
and
sent | ge stic
describ | k nests
be tree ty | pe, he | ight and p | oositio | n in tree, siz | | <u>ow</u> n | | BA | Presence of the species pre Evidence of the species | of lar
and
sent
of dis | ge stic
descrik | k nests
be tree ty | ogging, r | ight and p | ATV us | n in tree, siz | Unkn
Yes □ No | own
O
Unknown | | BA | Presence of If yes, UTM species pre | of lar
and
sent
of dis
ribe | ge stic
descrik | k nests
be tree ty | ogging, r | ight and poads, paths, | ATV us | n in tree, siz | Unkn
Yes □ No | <u>ow</u> n | | BA | Presence of If yes, UTM species pre | of lar
and
sent
of dis
ribe | ge stic
describ
sturbar | k nests
be tree ty | ogging, r | ight and poads, paths, | ATV us | n in tree, siz | Unkn
Yes □ No | own
O
Unknown | | BA | Presence of If yes, UTM species pre | of lar
and
sent
of dis
ribe | describ
describ
sturbar
preser | ce? (i.e k | ogging, r | ight and posts, paths, No iption | ATV us | n in tree, size, trails) \(\bigcup \) f yes, Surrounding | Vn∤n
Yes ☐ No
U
Habitat | own Unknown nknown Unknown | | BA | Presence of If yes, UTM species pre Evidence of If yes, desconductions of Seeps/ spread Seep/Spring # | of lar
and
sent
of dis
ribe | describ
describ
sturbar
preser | ce? (i.e k | ogging, r | ight and poads, paths, | ATV us | n in tree, size, trails) \(\bigcup \) f yes, Surrounding | Vn∤n
Yes ☐ No
U
Habitat | own Unknown nknown | | BA | Presence of If yes, UTM species pre Evidence of If yes, desconductions of Seeps/ spread Seep/Spring # | of lar
and
sent
of dis
ribe
ings | describ
describ
sturbar
preser | ce? (i.e k | ogging, r | oads, paths, No iption | ATV us | n in tree, size, trails) \(\bigcup \) f yes, Surrounding Presence of emergent/size | Vn∤n
Yes ☐ No
U
Habitat | Unknown Nknown Unknown Unknown Presence of | | | ELC | SITE: | 16101 | 0641 | 6 | | | POLY | GON: (4) | | | | |------------|--|-------------------|------------------------|----------|---------------------------------------|-------------
--------------|------------|-------------------|--------------|---------------------------|----------| | | COMMUNITY | | | GAN | · · · · · · · · · · · · · · · · · · · | DATE: | Nov. L | 1.10 | | UTME | | | | | ESCRIPTION &
LASSIFICATION | START: | | END | contile of | 117 | - Vite en | UTMZ | | UTMN: | | | | PC | DLYGON DES | CRIP | TION | metat | | regulie. | tion of the | (155), e | inggere. | | | | | Ī | SYSTEM | | STRATE | | OGRAPHIC
EATURE | HIS | STORY | PLA | NT FORM | COI | MMUNITY | | | | TERRESTRIAL | ☐ ORG | | | CUSTRINE
ÆRINE | M NATL | | SUB | NKTON
SMERGED | LAKE | ID | 9. | | | WETLAND | | RAL SOIL | BOT | TTOMLAND
RRACE | CULT | TURAL | GRA | ATING-LVD. | RIVE | EAM | | | ١, | AQUATIC | | ENT MIN.
DIC BEDRK. | U VAL | LLEY SLOPE | | | FOR | RB
HEN | MAR
SWA | NSH
NMP | f | | | THE YEAR | | C BEDRK. | ROL | LL. UPLAND | | | BRY
DEC | CIDUOUS | □ FEN □ BOG | | | | | SITE | ☐ CAR | B. BEDRK. | □ TAL | LUS
EVICE / CAVE
VAR | C | OVER | O MIX | NIFEROUS
ED | PRA | DOW | | | | OPEN WATER | | | RO | CKLAND
ACH / BAR | OPE! | N | 18 | | THIC | KET | | | | SHALLOW WATER
SURFICIAL DEP.
BEDROCK | 2.1 | | | ND DUNE | SHRI | | 10 | | FOR | ODLAND
REST
NTATION | | | _ | AND DESCR | IPTIO | N: | | | | | | | | Total re- | | | زي | LAYER | НТ | CVR | 1 | SPECIES
MUCH GREA | | | | ASING DO | | | | | 1 | CANOPY | 1-2 | LVK | | PENN | IR | - GRE | | | 1 | 22/ | | | 2 | SUB-CANOPY | 3 | 4 | FRA | | 1 >> 1 | ULM A | ME | R | | | | | 3 | UNDERSTOREY | 4-5 | 4 | - | | 14. | V -10. 11 | بية ا | | p 17 | | 3 No | | 4 | GRD. LAYER | L-7 | '- | LUK | JIUL | الجنواة | -5,1 | Ut. | mil est | Sec. | | 3 Acces | | 5 T | TAND COMPOS | SITION: | 19 | 1.8 | 111744 | 46 | | 54 | E Lift By | BA: | | _ | | SI | ZE CLASS AN | LYSIS | | A | < 10 | A | 10 - 24 | 0 | 25 - 50 | | > 50 | _ | | ST | TANDING SNAC | 38: | | | < 10 | | 10 - 24 | | 25 - 50 | | > 50 | 3 No | | DE | EADFALL / LOC | GS: | | | < 10 | | 10 - 24 | ال | 25 - 50 | 1 November 1 | > 50 |) Access | | AB | BUNDANCE CODE | ES: | 1004 | N = N | | = RARE | | CCASIC | Principal willing | ABUNDA | 1000000000 | 7 | | C | OMM. AGE: | g form | PIONEE | R | YOUNG | X | MID-AGE | _ال | MATURE | | OLD
GROWTH | | | Ī | | | | | | | | | | | 9 1/1 | | | | <u>OIL ANALYSI</u>
Exture: | 5 : | | DED | TH TO MO | TTLES | / GLEY | g = | | G= | TSS. |] i d | | - | OISTURE: | | | | TH OF OR | | | | | 100 | (cm) | | | | OMOGENEOUS | 5 / VA | RIABLE | | TH TO BE | | | | | 11111 | (cm) | | | | OMMUNITYC | | | . PHY.12 | | <u>ļ</u> ., | 1197 | 178 | THE HAIT | | | | | | OMMUNITY CL | | | 116.014 | To the | | | N ros | CODE: | SW | | 4 | | ٠. | OMMUNITY SE | | | | US SW | amt | > | W_{R} | CODE: | SW | D | | | | Della Commonation of | _ | | | | | | 1111003 | 1 | | | | | C | COSITE: AS | ۸۸ م | inexi | al I | Decidu | 0709 | Swar | ND | CODE: | SW | D2 | _ | | C | COSITE: AS | PE: | Min | | | ovs.
Sv | Swan
1amp | , | CODE: | 111111 | 2-2 | | | C | COSITE: AS | PE:
Ash | | | Decidu.
1 Dec | ovs
Sn | | , | CODE: | 111111 | | | | C | COSITE: AS VECEN | PE:
Ash
ION | | | | OUS
SN | | , | CODE: | 111111 | | | | ELC | SITE: T-Line | |------------------|--------------------| | | POLYGON: Feature 2 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | | LA | YER | Į. | corr. | SPECIES CODE | | LÁ | YER | | | |--------------|-----|----------|------|-------|--|------------------------|-------|-----------|------|---|------| | | 1 | 2 | 3 | 4 | | SPECIES CODE | 1 | 2 | 3 | | COLL | | FRAPENN | D | D | | | | | | | | | | | ULMAMER | | A | | | | | | | | | | | ACERUBR | R | CORSTOL | | | 0 | H 2 | 5 | | | | | | | 25 | | | | | | | | | | | li l | | | | | | 35 | | | | | | | | | | | | | | | | | | | E
(19, | 8 | | | | | 1 4 | E
Est | 12 | 1 # | <u> </u> | | 100 | Ľ3 | | | | | | | 12 | 151 | | l Pag | | | | 2-1 | 0 | | | estimate est | | 1 | 1911 | 3.17 | THE WAS IN | Terrorium methode (for | 7.0 | levó | | | | | 901 | | | | 5/61/ | | W. Casal St. | | 1921 | | | | | | | | (3) | UII. | (Destination | | | | | | | | | | | | , | | | | | | | | | 281 2001 | | | | | GITARON-III | | (1+4) | 11 | | | | Page of | ELC | SITE: | | | | POL | YGON: | | |--|---|--|--|--|--|---|------------------------------------| | COMMUNITY | SURVEY | OR(S): | | DATE | | | UTME: | | DESCRIPTION & CLASSIFICATION | START: | W. William | END | - Long tracks | UTN | AZ. | UTMN: | | OLYGON DE | SCRIPT | TION | Litera e vicini | V AND AND THE | lina. | Jana's | | | SYSTEM | | TRATE | TOPOGRAPHI
FEATURE | HISTORY | PL | ANT FORM | COMMUNITY | | TERRESTRIAL | ORGA | NIC | LACUSTRINE | NATURAL | | LANKTON | LAKE | | WETLAND | ☐ MINE | RAL SOIL | RIVERINE BOTTOMLAND | CULTURAL | □ F | LOATING-LVD. | POND | | AQUATIC | ☐ PARE | NT MIN. | TERRACE VALLEY SLOPE | | □F | GRAMINOID
ORB | STREAM MARSH | | | ACID! | C BEDRK. | ☐ TABLELAND | | | ICHEN
RYOPHYTE | SWAMP | | SAME FOR | BASIC | BEDRK. | ROLL UPLAND | THE VENT | | CONIFEROUS | BOG BARREN | | SITE | ☐ CARE | B. BEDRK. | CREVICE / CAV | COVER | | AIXED | ☐ MEADOW
☐ PRAIRIE | | OPEN WATER | | | ROCKLAND BEACH / BAR | □ OPEN | | | ☐ THICKET | | SHALLOW WATER | | | SAND DUNE | ☐ SHRUB | - 10 | | ☐ WOODLAND
☐ FOREST | | BEDROCK | 2 | | BLUFF | TREED | | | PLANTATION | | STAND DESCI | PIDTICI | M. | | | | | 1886 | | | 7-0-0 | | | S IN ORDER OF | | | | | LAYER | HT | CVR | (>> MUCH GRI | ATER THAN; > G | REALE | THAN; - AB | OUT EQUAL TO) | | 1 CANOPY | | | U SII | | | | | | 2 SUB-CANOPY | The L | | 3E 1 F 0 | 013 | | | N I am | | | / | | | | | | | | 3 UNDERSTORE | 1 2 1/2 | | | - St 101 1 347 | | | | | 4 GRD. LAYER | | 2 = 10 <h< th=""><th>T-25 m 3 = 2<ht-1< th=""><th>m 4=1<ht√2 5<="" m="" th=""><th>■ 0.5<ht< th=""><th>s1 m 6 = 0.2<ht< th=""><th>,0.5 m 7 = HT<0.2 m</th></ht<></th></ht<></th></ht√2></th></ht-1<></th></h<> | T-25 m 3 = 2 <ht-1< th=""><th>m 4=1<ht√2 5<="" m="" th=""><th>■ 0.5<ht< th=""><th>s1 m 6 = 0.2<ht< th=""><th>,0.5 m 7 = HT<0.2 m</th></ht<></th></ht<></th></ht√2></th></ht-1<> | m 4=1 <ht√2 5<="" m="" th=""><th>■ 0.5<ht< th=""><th>s1 m 6 = 0.2<ht< th=""><th>,0.5 m 7 = HT<0.2 m</th></ht<></th></ht<></th></ht√2> | ■ 0.5 <ht< th=""><th>s1 m 6 = 0.2<ht< th=""><th>,0.5 m 7 = HT<0.2 m</th></ht<></th></ht<> | s1 m 6 = 0.2 <ht< th=""><th>,0.5 m 7 = HT<0.2 m</th></ht<> | ,0.5 m 7 = HT<0.2 m | | | 1 = >25 m | 1 2 = 10 <h
1 = 0% <</h
 | T:25 m 3 = 2 <ht:10< th=""><th>m 4=1<ht;2 8<br="" m="">CVR; 25% 3=25<</ht;2></th><th>= 0.5<ht
CVR < 60°</ht
</th><th>s1 m 6 = 0.2<ht
% 4= CVR > 609</ht
</th><th>.0.5 m 7 = HT<0.2 m</th></ht:10<> | m 4=1 <ht;2 8<br="" m="">CVR; 25% 3=25<</ht;2> | = 0.5 <ht
CVR < 60°</ht
 | s1 m 6 = 0.2 <ht
% 4= CVR > 609</ht
 | .0.5 m 7 = HT<0.2 m | | 4 GRD. LAYER | 1 = >25 m
0= NONE | 1 2 = 10 <h
1 = 0% <</h
 | T-25m 3=2 <ht:11
CVR \ 10% 2=10 <</ht:11
 | m 4=1 <ht,2m 8<br="">CVR,25% 3=25<</ht,2m> | ● 0.5 <ht
CVR < 60°</ht
 | .1 m 6 = 0.2 <ht
% 4= CVR > 609</ht
 | 50.5 m 7 = HT<0.2 m | | 4 GRD. LAYER
HT CODES:
CVR CODES | 1 = >25 m
6= NONE
SITION: | 1= 0% < | T.25 m 3 = 2 <ht:10
CVR \ 10% 2= 10 <</ht:10
 | m 4=1 <ht;2 3="25<</td" 5="" cvr;25%="" m=""><td>CVR < 50</td><td>31 m 6 = 0.2<ht
% 4= CVR > 609</ht
</td><td><u> </u></td></ht;2> | CVR < 50 | 31 m 6 = 0.2 <ht
% 4= CVR > 609</ht
 | <u> </u> | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO | 1 = >25 m
0= NONE
SITION: | 1= 0% < | CVR . 10% 2= 10 < | CVR , 25% 3= 25 < | 4 | % 4= CVR > 609 | BA: | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA | 1 = >25 m
0= NONE
SITION:
ALYSIS: | 1= 0% < | cvR . 10% 2= 10 < | CVR , 25% 3= 25 < | 4 4 4 | % 4= CVR > 609 | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO | 1 = >25 m
9= NONE
SITION:
ALYSIS:
GS: | 1= 0% < | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | 10 - 2
10 - 2
10 - 2 | 4 4 4 | 25 - 50
25 - 50
25 - 50 | BA: > 50 > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD | 1 = >25 m
9= NONE
SITION:
ALYSIS:
GS: | 1= 0% < | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | 10 - 2
10 - 2
10 - 2 | 4 4 4 4 OCCAS | 25 - 50
25 - 50
25 - 50 | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD | 1 = >25 m
9= NONE
SITION:
ALYSIS:
GS: | 1= 0% < | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | 10 - 2
10 - 2
R = RARE 0 = | 4 4 4 4 OCCAS | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = A | BA: > 50 > 50 > 50 > 50 ABUNDANT | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN
STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS | 1 = >25 m
0= NONE
SITION:
ALYSIS:
GS:
GS:
ES: | 1= 0% < | < 10
< 10
< 10
< 10
< 10
N = NONE YOUNG | 10 - 2
10 - 2
R = RARE 0 = | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | > 50 > 50 > 50 > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: | 1 = >25 m
0= NONE
SITION:
ALYSIS:
GS:
GS:
ES: | 1= 0% < | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | BA: > 50 > 50 > 50 ABUNDANT GROWTH | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: MOISTURE: | 1 = >25 m
0= NONE
SITION:
ALYSIS:
GS:
GS:
ES: | 1= 0% < | < 10 < 10 < 10 < 10 < 10 < 10 N = NONE YOUNG DEPTH TO M DEPTH OF O | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: HOMOGENEOU | 1 = >25 m
0= NONE SITION: ALYSIS: GS: GS: GS: IS: | 1= 0% < | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | BA: > 50 > 50 > 50 ABUNDANT GROWTH | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: MOISTURE: | 1 = >25 m o= NONE SITION: ALYSIS: GS: GS: GS: ES: CLASSI | 1= 0% < | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: HOMOGENEOU COMMUNITYS | 1=>25 m
0= NONE SITION: ALYSIS: GS: GS: ES: LS: LASS: | 1= 0% < | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY C | 1=>25 m
0= NONE SITION: ALYSIS: GS: GS: ES: LS: LASS: | 1= 0% < | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50
25 - 50
25 - 50
25 - 50
SIONAL A = / | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: MOISTURE: HOMOGENEOU COMMUNITY CI COMMUNITY SI | 1 = >25 m
0= NONE
SITION:
ALYSIS:
GS:
GS:
ES:
LASS:
LASS:
ERIES: | 1= 0% < | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 9 OCCA: | 25 - 50 25 - 50 25 - 50 25 - 50 SIONAL A = / | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY CI COMMUNITY SI ECOSITE: VEGETATION T | 1 = >25 m o= NONE SITION: ALYSIS: GS: GS: ES: LASS: ERIES: YPE: | PIONEER | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: | BA: > 50 | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SQIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY CI COMMUNITY SI ECOSITE: | 1 = >25 m 0= NONE SITION: ALYSIS: GS: GS: ES: LASS: LASS: ERIES: YPE: | PIONEER | CVR \ 10% | 10 - 2 10 - 2 10 - 2 R = RARE 0 = MID-AGE OTTLES / GLEY RGANICS: | 4 4 4 4 4 9 OCCA: | 25 - 50 25 - 50 25 - 50 25 - 50 SIONAL A = / | BA: > 50 | | ELC | SITE: | | |------------------|--------------|----| | | POLYGON: | | | PLANT
SPECIES | DATE: | 77 | | LIST | SURVEYOR(S): | | | PECIES CODE | | LA | YER | POR S | COLL. | SPECIES CODE | P. | LA | rer | | I | |------------------|----------|-------|-------|----------|-----------|-----------------|-----|----------|--------------|-----|---| | | 1 | 2 | 3 | 4 | | | 1 | 2 | 3 | 4 | İ | | | | | | | | | | | | | İ | | | | | | | | | | | | | ł | | | - | - | | Н | | | | | - | _ | ł | | | | | | | | | | | | | ļ | | | | | | | | | | | | | l | | | | | | | | | | | | | ı | | | | | | | | | | | | | ŀ | | | - | | - | \vdash | | | - | | - | | | | | - | - | | | | | | | _ | _ | Ļ | ١ | | 50 = | \vdash | | | | | ··· | | | | | _ | | | - | | | - | | | | | | _ | _ | | · | | | | | | | | | | | | | | | | 1 | _ | | | | | | | | | | | \dashv | - | | | | \vdash | | - | \dashv | | | - | | - | | - | | | | - | _ | - | | | | | | | _ | _ | | | 1 | 10 | | | | | | | 1 | 124 | - | | | | | 100 | + | | | | - | - | | | | 22 | | - | | - | | | . 9 | - | _ | | | | E[1]= | | | | | | | | | - 7 | | | | White is the | | 8.3 | | | - 35-31- | . Y (100) 7 (1) | 200 | 100 | | | | | ACTUAL TO STREET | | 110-1 | 1 | | 910 7 | | | 7 | | | _ | | | | _ | | + | | | | \dashv | \dashv | - | - | | | | - 19 | 332 | | NOTES I | | 144 | - | - | - | | | 141 | | | | | | | | | \downarrow | | | | Bulling | | | T.J.J | | | = | | | | | | | 11 373 | | | 100 | | STREET, S | | - | | | | | Page of Project Location 120m Zone of Investigation Proposed Turbine Location (V3) Access Road Centre Line (V3) Proposed Collector Line (V2 Sept 30) ROW Installation Zone (V3) Substation Property Elexco Aquired Agreements (Oct 26) Government Lands UDI Lands Abandoned Railway GAW Nov.4.10 ### Client/Project SAMSUNG C&T GRAND RENEWABLE ENERGY PARK Figure No. FIELD MAP 5 **TRANSMISSION LINE -MAPBOOK** | Stantec | 70-1 South | | | Wildlife Assess Polygon 9 | Habitat | |------------------------|-------------|-------|--------------|---------------------------|------------------------| | Project Number | 161010646 | | Project Name | Samsung - | T-Line | | Date / Time: | ov. 4. 2010 | | Field Person | nel: GAW | | | Weather
Conditions: | Temp: | Wind: | Cloud: /00% | PPT:
light rain | PPT in last
24 hrs: | Does the site contain potential reptile hibernacula features? Yes No (if yes, describe details in Table 1). Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, describe details in Table 1). Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species
observed usi
feature | |-----|-----------------|--------------------|-------------|------------------------------------| | | | ga 1 1 1 1 2 1 5 1 | | | | - X | | | | | | | in destination, | | | | ## **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, OP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | | | | | | | | | | | | Ale lai | | ge of sta | | 171 | | + [▽ \ | Vec II No | | | |--|------------------------------------|--|-------------------------------|--------------|----------------------------|---------------|-----------------------------|-------------------------------------|-----------------------| | If yes, a | approxim | ate # pre | esent or | % of s | stand <u>V.</u> | Rare | Yes No
(~1)
etc) from | edge | 1 | | If yes pro | | acterizatio | n of numb | oer pres | ent, height a | | H of snags an | nd indicate i | f they | | Trees v | | ities pre | esent? [|] No [| ☐ Rare ☐ | Occas | ional 🗌 Abi | undant N | one seer | | | | Height r
tree | anges of | Range
DBH | e of Tree | Rang
Heigh | e of Cavity
nts | Cavity siz
(approx.
diameter) | | | 71-11 | | | | hm's | | | | | | | | | | | | | | | | | | Presen | | rge stic | k nests | | tor nests)?
eight and p | | s □ No
n in tree, siz | ze of nest | , | | Present
If yes, I
species
Eviden | JTM and present | rge stic
I describ | k nests
be tree ty | /pe, he | | ositior | n in tree, siz | Unknow
Yes □ N | <u>n</u> | | Present If yes, It species Evident If yes, o | JTM and spresent | rge stic
i describ
t
sturban | k nests pe tree ty | ogging, r | oads, paths, | ATV use | n in tree, siz | Unknow
Yes □ No
Un kn | n
o
own | | Present If yes, It species Evident If yes, o | JTM and spresent ace of didescribe | rge stic
i describ
t
sturban | k nests pe tree ty | ogging, r | eight and p | ATV use | n in tree, siz | Unknow
Yes □ No
Un kn
Un k | <u>n</u> | | Present If yes, Use Seeps/ | JTM and spresent ace of didescribe | rge stick
describ
t
sturban
preser | k nests pe tree ty | ogging, r | oads, paths, | ATV use | n in tree, siz | Unknow
Yes □ No
Un kn
Un k | n
o
own | | Present If yes, I species Evident If yes, I seeps/Species | JTM and spresent describe spring # | sturban | k nests be tree ty ce? (i.e.) | ogging, r | oads, paths, | ATV use | n in tree, siz | Unknow Yes Now Unkn Habitat | n
o
own
nown | | Present If yes, I species Evident If yes, I seeps/Species | JTM and spresent
ace of didescribe | sturban preser UTM | k nests be tree ty ce? (i.e.) | ogging, r | oads, paths, | ATV use | n in tree, siz | Unknow Yes Now Unknow Habitat | n
o
own | Earth Science, Regionally Significant GAW Nov. 4.10 - Notes 1. Coordinate System: UTM NAD 83 Zone 17 (N). 2. Data Sources: Ontario Ministry of Natural Resources © Queens Printer Ontario, 2009; © Samsung, 2010. 3. Image Source: Grand River Conservation Authority © First Base Solutions, 2010 Imagery Date: Spring 2006; LIDAR IMAGERY SOURCE??? 4. Produced using the Version 3 site plan provided by Samsun issued on October 18, 2010 SAMSUNG C&T GRAND RENEWABLE ENERGY PARK #### Figure No. FIELD MAP 4 **TRANSMISSION LINE -MAPBOOK** | Stantec | 70-1 Sout
Guelph, C
N1G 4P5
Tel: (519) | consulting Ltd.
Ingate Drive
Ontario, Canada
836-6050
) 836-2493 | n lightsiis
nn bjon li | | Habitat
sment | |------------------------|---|--|---------------------------|-------------|--------------------------------| | Project Number | 161010646 | Chamt be o | Project Nan | ne: Samsung | č . | | Date / Time: | 1.4.10 | | Field Perso | nnel: GAW | = - N | | Veather
Conditions: | Temp: | Wind: | Cloud: 1007. | PPT: light | PPT in last
24 hrs:
Rain | | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |----------|-----------------|---------|----------------------------|--------------------------------------| | | | | | | | J.Big at | عدر الأ | | of the 1st to do to be and | | | | | | | | Does the site contain potential bat hibernacula features? Yes No (if yes, Unknown describe details in Table 1) ## **Species Observations** describe details in Table 1). List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | | | | 1 | | 1 | | 1 | | / | | | | - 3 | and M | | es presen | t 🖂 Y | es 🗆 No | | | |---|---|---|------------------------------------|------------|----------------------------------|-----------------------|-------------|-------------------------------------|----------| | If yes, a | approxim | ate # pr | esent or | % of s | stand <u>fau</u>
only, in FOE | observ | red | | _ | | If yes pre | ovide char | acterizatio | Yes [] I
on of numb | er pres | | and DBH | of snags ar | nd indicate if | they | | Trees | | | | | Rare 🗌 | | | | one seen | | | | Height r | anges of | DBH | e of Tree | Hange | of Cavity | Cavity siz
(approx.
diameter) | | | | v V i | 1111= | | 1 1 | H III I | i i i i i i i | | | | | | | | | | | 1 | | 1 | i | | | onj nasto | | | | | | | HINE S | 100 | | | ROOST ? | | | (i.e. rapl | tor nests)? | ☐ Yes | □ No | No | one seen | | Preser | nce of la | rge stic | k nests (| | | | | No
ze of nest | | | Preser
If yes,
species
Evider | uce of la
UTM and
s presen | rge stic
d describ
t
sturban | k nests (
be tree ty | pe, he | eight and p | osition | in tree, si | | | | Preser If yes, species Evider If yes, | nce of la
UTM and
s presen
nce of di
describe | rge stic
d describ
t
sturban | k nests (pe tree ty ce? (i.e id | pe, he | eight and p | ATV use, | in tree, si | ze of nest | | | Preser If yes, species Evider If yes, | nce of la UTM and s presen nce of di describe | rge stic
d describ
t
sturban | k nests (pe tree ty ce? (i.e id | pe, he | eight and p | ATV use, | in tree, si | ze of nest | O Unknow | | Preser If yes, species Evider If yes, Seeps | nce of la UTM and s presen nce of di describe | rge stic
d describ
t
sturban
s preser | k nests (pe tree ty ce? (i.e id | pe, he | roads, paths, | ATV use, | in tree, si | ze of nest | O Unknow | | Preser If yes, species Evider If yes, Seeps Seep/Sp | nce of la UTM and s presen nce of di describe / springs pring # | rge sticed described the sturban spreser UTM | k nests (be tree ty | pe, he | roads, paths, | ATV use, | in tree, si | ze of nest | O Unknow | | Preser If yes, species Evider If yes, Seeps Seep/Sp | nce of la UTM and s presen nce of di describe / springs pring # | rge stice didescrib t sturban s preser UTM Present? | k nests (pe tree ty ce? (i.e id | pe, he | roads, paths, | ATV use, If yes, ool | in tree, si | ze of nest Yes □ No Habitat | Unknown | | | ELC | | | 1064 | | | | | | <u> </u> | | 4 | |--------------------------------|--|--|--------------------------------------
--|--|---|---|---|--|---|--|-----------| | | COMMUNITY | SURVE | YOR(S): | GAN | J | DATE: | Nov | 4.1 | 0 | UTME | | | | | SCRIPTION & | START: | X KSRVA | END | Çətayarıya | same | an Ventigrasi | UTMZ | CONTRACTOR | UTMN: | | | | 20 | LYGON DES | CRIP | TION | - 100 | iou in | 9 5000 | | 00000 | 1, 01: | | | ļ. | | Alk | SYSTEM | | TRATE | | OGRAPHIC
ATURE | HIS | STORY | PLA | NT FORM | COM | MUNITY | | | ₩ w | ERRESTRIAL
VETLAND
QUATIC | ☐ PARE | RAL SOIL | DIAC | USTRINE
ERINE
TOMLAND
RACE
LEY SLOPE
LELAND
L. UPLAND | MATU
CULT | | SUB | | LAKE POND RIVER STRE MARS SWAN FEN BOG | (P | | | 146 | SITE | j- | B. BEDRK | TAU | US
VICE / CAVE | C | OVER | | IIFEROUS | BARRI
MEAD
PRAIR | OW | | | 🔲 s
(f) s | PEN WATER
HALLOW WATER
URFICIAL DEP.
EDROCK | | | ROC | KLAND
ACH / BAR
ID DUNE | OPEI | UB | B9" | | ☐ THICK
☐ SAVAI
☐ WOOD
☐ FORE
☐ PLANT | ET
NNAH
DLAND
ST | | | SI | AND DESCR | IPTIO | N: | | | | | | | | | 7 | | Vis | LAYER | нт | CVR | (>> N | SPECIES
IUCH GREA | IN ORD | DER OF D
AN; > GRI | ECRE/ | ASING DO
'HAN; = AB | MINANO
OUT EQU | IAL TO) | | | 1 | CANOPY | 1-2 | 4 | | PENN | 7477 | 60.45 | | Serie | | | | | 2 | SUB-CANOPY | 3 | 4 | FRA | PENN | >> U | LMAI | WER | 18 18 | 3 | | | | 1 | | - | | | | | | | | | | 17.1 | | 4
HT | UNDERSTOREY GRD. LAYER CODES: | 4-5
6-7 | 2=10< | HT : 25 m | STOL. | n 4=1 <h< th=""><th>ਜਿ⊰2 m 5 = 1</th><th>).5<ht.1< th=""><th>m 6 = 0.2<ht< th=""><th>√0.5 m 7 =</th><th>HT<0.2 m</th><th>S Acces</th></ht<></th></ht.1<></th></h<> | ਜਿ⊰2 m 5 = 1 |).5 <ht.1< th=""><th>m 6 = 0.2<ht< th=""><th>√0.5 m 7 =</th><th>HT<0.2 m</th><th>S Acces</th></ht<></th></ht.1<> | m 6 = 0.2 <ht< th=""><th>√0.5 m 7 =</th><th>HT<0.2 m</th><th>S Acces</th></ht<> | √0.5 m 7 = | HT<0.2 m | S Acces | | 4
CVF | GRD. LAYER | 1 = >25 n | 1= 0% | HT : 25 m | 3 = 2 <ht<10 n<="" td=""><td>n 4 = 1<h
√R ⟨ 25%</h
</td><td>1T⊲2 m 5 = 1
3= 25 < CV</td><td>0.5<ht.1
R . 60%</ht.1
</td><td>m 8 = 0.2<ht
4= CVR > 60*</ht
</td><td>0.5 m 7 =</td><td>∍ HT<0.2 m</td><td>Acces</td></ht<10> | n 4 = 1 <h
√R ⟨ 25%</h
 | 1T⊲2 m 5 = 1
3= 25 < CV | 0.5 <ht.1
R . 60%</ht.1
 | m 8 = 0.2 <ht
4= CVR > 60*</ht
 | 0.5 m 7 = | ∍ HT<0.2 m | Acces | | 4
HT
CVF | GRD. LAYER
CODES:
R CODES | 1 = >25 n
0= NONE | 1= 0% | HT : 25 m | 3 = 2 <ht<10 n<="" td=""><td>n 4=1<h< td=""><td>17<2m 5=
3= 25 < CV</td><td>0.5<ht.1
R . 60%</ht.1
</td><td>m 6 = 0.2<ht
4= CVR > 609</ht
</td><td></td><td>> HT<0.2 m</td><td>Acces</td></h<></td></ht<10> | n 4=1 <h< td=""><td>17<2m 5=
3= 25 < CV</td><td>0.5<ht.1
R . 60%</ht.1
</td><td>m 6 = 0.2<ht
4= CVR > 609</ht
</td><td></td><td>> HT<0.2 m</td><td>Acces</td></h<> | 17<2m 5=
3= 25 < CV | 0.5 <ht.1
R . 60%</ht.1
 | m 6 = 0.2 <ht
4= CVR > 609</ht
 | | > HT<0.2 m | Acces | | 4 HT CVF | GRD. LAYER CODES: R CODES AND COMPOS | 1=>25 m
0= NONE
BITION: | 1= 0% | HT-25 m :
< CVR < 10 ⁴ | 3 = 2 <ht<10 n<br="">% 2= 10 < C\</ht<10> | VR < 25% | 3= 25 < CV | R , 60% | 4= CVR > 60 | | > 50
> 50 |] } Ye | | STA | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNA(ADFALL / LO | 1 = >25 n
0= NONE
BITION:
ALYSIS
GS:
GS: | 1= 0% | HT-25 m : < CVR < 10° | 3 = 2 <ht<10 n<br="">% 2= 10 < C\
< 10
< 10
< 10</ht<10> | A | 10 - 24
10 - 24
10 - 24 | R , 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 |] \ Acces | | 4 HT CVF | GRD. LAYER CODES: R CODES AND COMPOS E CLASS ANA | 1 = >25 n
0= NONE
BITION:
ALYSIS
GS:
GS: | 1= 0% | HT-25 m :
< CVR < 10 ⁴ | 3 = 2 <ht<10 n<br="">% 2= 10 < C\
< 10
< 10
< 10</ht<10> | A A = RARE | 10 - 24
10 - 24
10 - 24
0 = 0 | R , 60% | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
> 50 |] } Ye | | ST/ | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNA(ADFALL / LO | 1 = >25 n
0= NONE
BITION:
ALYSIS
GS:
GS: | 1= 0% | HT:25 m : < CVR < 10° | 3 = 2 <ht<10 n<br="">% 2= 10 < C\
< 10
< 10
< 10</ht<10> | A A = RARE | 10 - 24
10 - 24
10 - 24 | R , 60% | 25 - 50
25 - 50
25 - 50 | BA: BA: BA: BA: BA: BA: BA: BA: | > 50
> 50
> 50 |] } Ye | | ST/
ST/
DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS ANA ANDING SNA ADFALL / LOG | 1 = >25 m
0= NONE
SITION:
ALYSIS
GS:
GS: | 1= 0% | N = N(| = 2 <ht.10 n<br="">% 2= 10 < C\
< 10
< 10
< 10
ONE - R</ht.10> | A A = RARE | 10 - 24
10 - 24
10 - 24
0 = 0 | R 5 60% | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
> 50
NT |] } Ye | | ST/ | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNA ADFALL / LO UNDANCE CODI OMM. AGE: | 1 = >25 m
0= NONE
SITION:
ALYSIS
GS:
GS: | 1= 0% | N = N' | = 2 <ht-10 -="" 10="" 2="10" <="" c1="" m="" one="" oung<="" r="" td=""><td>A A TITLES</td><td>10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE</td><td>R , 60%</td><td>25 - 50
25 - 50
25 - 50
NAL A = /</td><td>BA: BA: BA: BA: BA: BA: BA: BA:</td><td>> 50
> 50
> 50
> 50
NT
OLD
SROWTH</td><td>] } Ye</td></ht-10> | A A TITLES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R , 60% | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: BA: BA: BA: BA: BA: BA: BA: | > 50
> 50
> 50
> 50
NT
OLD
SROWTH |] } Ye | | SIZ
ST/
DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS ANA ANDING SNA ADFALL / LO UNDANCE CODE MM. AGE: DIL ANALYS XTURE: DISTURE: | 1 = >25 m
0 = NONE
BITION:
ALYSIS
GS:
GS:
GS: | : 1= 0% | N = N DEP | = 24HT-10 m
= 10 < 10
< 10
< 10
< 10
ONE - R
YOUNG | A A TTLES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R 5 60% | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
> 50
NT
DLD
SROWTH |] } Ye | | SIZ
ST/DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNA/ ANDIN | 1 = >25 n
0 = NONE
BITION:
ALYSIS
GS:
GS:
GS:
GS: | PIONEE | N=N DEP DEP | = 2 <ht-10 -="" 10="" 2="10" <="" c1="" m="" one="" oung<="" r="" td=""><td>A A TTLES</td><td>10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE</td><td>R 5 60%</td><td>25 - 50
25 - 50
25 - 50
NAL A = /</td><td>BA:</td><td>> 50
> 50
> 50
> 50
NT
OLD
SROWTH</td><td>] } Ye</td></ht-10> | A A TTLES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R 5 60% | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
> 50
NT
OLD
SROWTH |] } Ye | | ST/DE ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNAG ADFALL / LOG UNDANCE CODI OMM. AGE: DIL ANALYS EXTURE: DISTURE: DIMMUNITYCOMMUNITYCO | 1 = >25 n
0 = NONE
SITION:
ALYSIS
GS:
GS:
GS: | PIONEE | N=NO | = 2 <hr/> = 10 < ct | A A TTLES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R 5 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = // | BA: | > 50
> 50
> 50
> 50
NT
DLD
SROWTH |] } Ye | | ST/
SIZ
ST/
DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS
AN/ ANDING SNA/ ANDIN | 1=>25 n 0= NONE BITION: ALYSIS GS: GS: ES: S / VAI BLASS ASS: | PIONEE | N=N'-25 m : <cvr 10'-10'-10'-10'-10'-10'-10'-10'-10'-10'-<="" \="" td=""><td>5 = 2 4 10 4 10 4 10 4 10 4 10 6 10 7 10 7 10 7 10 8 10 7</td><td>A A TILES GANIC</td><td>10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S:</td><td>R 5 60%</td><td>25 - 50
25 - 50
25 - 50
25 - 50
NAL A = //</td><td>BA:</td><td>> 50
> 50
> 50
> 50
SROWTH
(cm)</td><td>] } Ye</td></cvr> | 5 = 2 4 10 4 10 4 10 4 10 4 10 6 10 7 10 7 10 7 10 8 10 7 | A A TILES GANIC | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | R 5 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = // | BA: | > 50
> 50
> 50
> 50
SROWTH
(cm) |] } Ye | | SIZ
ST/
DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS ANA ANDING SNAA ADFALL / LOC UNDANCE CODI OMM. AGE: DIL ANALYS EXTURE: DISTURE: DIMMUNITY CL DIMMUNITY CL DIMMUNITY SE | I = >25 n o= NONE BITION: ALYSIS GS: ES: IS: ALS: ASS: RIES: | PIONEE PIONEE RIABLE FIGAT Sweet | N=N DEP DEP DEP TON: | S = 24HT-10 m \$ 2 = 10 < ct \$ 10 \$ 10 \$ 10 \$ 10 ONE \$ R YOUNG TH TO MO TH TO BE \$ S \$ S \$ S | A A = RARE TITLES GANIC DROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | R 5 60% | 25 - 50 25 - 50 25 - 50 25 - 50 MAL A = (MATURE | BA: | > 50
> 50
> 50
> 50
SROWTH
(cm)
(cm) |] } Ye | | SIZ
SIZ
ST/DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNAM ADFALL / LOG UNDANCE CODI OMM. AGE: DIL ANALYSI EXTURE: DISTURE: DISTURE: DISTURE: DIMMUNITY CL DIMMUNITY CL DIMMUNITY SE COSITE: A | 1 = >25 n 0 = NONE BITION: BIT | PIONEE PIONEE RIABLE RIABLE Dec | DEP DEP TON: | S=2 HT-10 m < 10 < 10 < 10 < 10 ONE R YOUNG TH TO MO TH TO BE US S Decid Use | TTLES GANIC DROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S:
C: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: CODE: CODE: | G= SWISWI | > 50
> 50
> 50
> 50
SROWTH
(cm)
(cm) |] } Ye | | SIZ
SIZ
ST/DE
ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS ANA ANDING SNAA ADFALL / LOC UNDANCE CODI MM. AGE: DIL ANALYS EXTURE: DISTURE: DIMMUNITY CL DIMMUNITY CL DIMMUNITY SE COSITE: AS | 1 = >25 n 0 = NONE BITION: BIT | PIONEE PIONEE RIABLE RIABLE Dec | DEP DEP TON: | S=2 HT-10 m < 10 < 10 < 10 < 10 ONE R YOUNG TH TO MO TH TO BE US S Decid Use | TTLES GANIC DROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S:
C: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | BA: ABUNDAI G= SW SWI | > 50
> 50
> 50
> 50
SROWTH
(cm)
(cm) |] } Ye | | ST/DE ABI | GRD. LAYER CODES: R CODES AND COMPOS E CLASS AN/ ANDING SNAM ADFALL / LOG UNDANCE CODI OMM. AGE: DIL ANALYSI EXTURE: DISTURE: DISTURE: DISTURE: DIMMUNITY CL DIMMUNITY CL DIMMUNITY SE COSITE: A | I = >25 n 0= NONE BITION: BITI | PIONEE PIONEE RIABLE RIABLE Dec | DEP DEP TON: | S=2 HT-10 m < 10 < 10 < 10 < 10 ONE R YOUNG TH TO MO TH TO BE US S Decid Use | TTLES GANIC DROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S:
C: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: CODE: CODE: | G= SWISWI | > 50
> 50
> 50
> 50
SROWTH
(cm)
(cm) |] } Ye | | ELC | SITE: T-Line | anilla — e. — | |------------------|--------------------|---------------| | | POLYGON: Feature 4 | | | PLANT
SPECIES | DATE: | | | LIST | SURVEYOR(S): | | | SPECIES CODE | | | YER | | COLL. | | ECIES (| | | LÀ | YER | 56 | COLL. | |---------------------|-------------------------|------|-------|----------|-----------|---------|---------|-------|----------|-----------|----------|----------|----------| | | 20 18
20 18
20 18 | 2 | 3 | | | | EUES (| ONE | 1 | 2 | 3 | | COLL. | | FRAPENN | D | D | | | | | | | | | | | | | ULMAMER | | A | | | | | | | | | | | | | ACERUBR | R | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | · | | | | | | | | | | L | CORSTOL | | | 0 | | | | | | _ | | | | | | 9 | | | | | | - | | | | | | | | | | | | | _ | | | | | L | | | | | | | YII | | | | | | | | _ | | _ | \dashv | | | | | | | | | - | | | L | | | | - | | 180 | Н | - | | | | - | | | | | | - | | | | | | - | | | | | | _ | \square | | + | | | | | | | | | - | | | - | | | - | | | | Ē. | | | \dashv | | - | | | | \vdash | | 4 | li
Is | | | | | | | | | | | H | | | - | | | | | | | | | | | | | | 11.0 | | | | | | | | | u v | 75-4 | yer com | DOM | | | (Cab) | 100 | | | AND A STREET OF THE | 900 | 7 | 10/15 | | | | | | 12 | 100 | 57 | - | | | | | MAIL | | ile T | gradia II | 11-11-2 | | | | | \dashv | | | | | | | | | | | | | \vdash | | - | + | | | | | | 357 | | Giv. Kir | | - PANON | | 1 | | | | | | | | | | | | - | | | \vdash | | - | + | | | 35.7 FL | | | NG . | | | 131- | | -0.11 | | \dashv | - | | 11 05:51 | | | | | 13/4 | 200 | | | | | | | | | | | | ELC | SITE: | | | | | | POLI | 30N: (9) | | | | |--|--
--|--|---|---|--|---|-----------------------------------|---|-----------------|--|---------------------------| | | COMMUNITY | SURVE | YOR(S) | | | DATE: | | | | UTME: | | 1 | | | ESCRIPTION & ASSIFICATION | START: | | END | | 1000 | v. 1-5 | UTMZ | | UTMN: | | | | PC | LYGON DES | CRIP | TION | Way Hares | =Lillowyte | أحرجن | | | CH.DC | | | | | | SYSTEM | SUBS | TRATE | | SRAPHIC
TURE | HIS | TORY | PLA | NT FORM | COI | MMUNITY | | | Ø,v | TERRESTRIAL
METLAND
AQUATIC | PARE | RAL SOIL | ☐ TERR | INE
OMLAND
ACE
Y SLOPE | MATU CULT | | SUB
FLO
GRA
FOR | NKTON MERGED ATING-LVD. MINOID IB IEN OPHYTE | LAKE | D
ER
EAM
SH | | | - | CITE I | | B. BEDRK. | CLIFF | | CC | OVER | IMI DEC | IDUOUS
IIFEROUS
ED | | REN
DOW | :=: | | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
SEDROCK | | | ALVAF | LAND
H/BAR
DUNE | OPEN | I
IB | 41 | | M FOR | KET
ANNAH
ODLAND | | | ST | AND DESCR | RIPTIO | N: | | | | | | | | | | | II S | LAYER | нт | CVR | (>> MU | PECIES
ICH GREA | IN ORD | ER OF D | ECRE/ | ASING DOI
THAN; = ABI | MINAN
OUT EC | ICE
(UAL TO) | | | 1 | CANOPY | 1-2 | 4 | | PENN | 1 | Jacky | 1 | 100 | 3/ | | | | 2 | SUB-CANOPY | 3 | 4 | 11 | 7.00 | | ULMA | AME | R | y | 1 191 | | | | | | | 0 - 0 | - | | | | | 3011== | | | | - | UNDERSTOREY | 14-5 | 4 | LOK | SIOL | | | | | | | | | 3
4
HT | UNDERSTOREY GRD. LAYER CODES: R CODES | 6-7 | n 2 = 10 <h< th=""><th>No A</th><th>STOL
CCESS
2<4T<10 m
2= 10 < C\</th><th>4 = 1<h
/R ₄ 25%</h
</th><th>T⊲2 m 5 = 0
3= 25 < CVI</th><th>).5<ht⊴1
R < 60%</ht⊴1
</th><th>m 6 = 0.2<ht
4= CVR > 609</ht
</th><th>-0.5 m 7</th><th>≠ HT<0.2 m</th><th><u> </u></th></h<> | No A | STOL
CCESS
2<4T<10 m
2= 10 < C\ | 4 = 1 <h
/R ₄ 25%</h
 | T⊲2 m 5 = 0
3= 25 < CVI |).5 <ht⊴1
R < 60%</ht⊴1
 | m 6 = 0.2 <ht
4= CVR > 609</ht
 | -0.5 m 7 | ≠ HT<0.2 m | <u> </u> | | 3
4
HT
CV | GRD. LAYER CODES: R CODES AND COMPOS | 1 = >25 n
0= NONE
SITION: | n 2=10 <h
t= 1=0%<</h
 | No A
1.25 m 3 c
CVR < 10% | CCESS
• 2 <ht<10 m<br="">2= 10 < C\</ht<10> | /R s 25% | 3= 25 < CV | R < 60% | 4= CVR > 609 | BA: | aipter Wit | | | 3
4
HT
CV | GRD. LAYER
CODES:
R CODES | 1 = >25 n
0= NONE
SITION: | n 2=10 <h
t= 1=0%<</h
 | No A | Ccess | 4 = 1 <h
/R s 25%</h
 | T-2 m 6 = 0
3= 25 < CVI | 0.5 <ht⊴1
R < 60%</ht⊴1
 | m 6 = 0.2 <ht
4= CVR > 609</ht
 | • | > 50 | | | 3
4
HT
CV
ST | GRD. LAYER CODES: R CODES AND COMPOS | 1 = >25 m
0= NONE
BITION: | n 2=10 <h
t= 1=0%<</h
 | No A
1.25 m 3 c
CVR < 10% | CCESS
2 CHT (10 m
2 = 10 < C\
< 10 | /R s 25% | 10 - 24
10 - 24 | R < 60% | 4= CVR > 609
25 - 50
25 - 50 | • | > 50
> 50 | No Ames | | 3
4
HT
CV
ST
ST | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS AN ANDING SNAF | 1=>25 r
0= NONE
BITION:
ALYSIS
GS:
GS: | n 2=10 <h
t= 1=0%<</h
 | No A
T.25 m 3 s
CVR < 10% | < 10 < 10 < 10 | A A | 10 - 24
10 - 24
10 - 24 | R < 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | No Acces | | 3
4
HT
CV
ST
ST | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA | 1=>25 r
0= NONE
BITION:
ALYSIS
GS:
GS: | n 2=10 <h
t= 1=0%<</h
 | T:25 m 3 c CVR < 10% | <10 <10 <10 <10 <r< td=""><td>A A = RARE</td><td>10 - 24
10 - 24
10 - 24
0 = 0</td><td>R < 60%</td><td>25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A</td><td>BA:</td><td>> 50
> 50
> 50
> 50</td><td>]
]
]
]
Acces</td></r<> | A A = RARE | 10 - 24
10 - 24
10 - 24
0 = 0 | R < 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50 |]
]
]
]
Acces | | 3
4
HT
CV
ST
ST
DE | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS AN ANDING SNAF | 1=>25 r
0= NONE
BITION:
ALYSIS
GS:
GS: | n 2=10 <h
t= 1=0%<</h
 | T:25 m 3 = CVR < 10% | < 10 < 10 < 10 | A A = RARE | 10 - 24
10 - 24
10 - 24 | R < 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | No Acces | | 3
4
HT
CV
ST
ST
DE
AB | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNA EADFALL / LOO UNDANCE CODE DMM. AGE: | 1 = >25 r
0 = NONE
BITION:
ALYSIS
GS:
GS: | n 2=10 <h
E 1=0%<</h
 | N = NO | <10 < 10 < 10 NE - R | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0 | R < 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50 | No Acces | | ST DE AB | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNA EADFALL / LOO UNDANCE CODE DMM. AGE: CIL ANALYS EXTURE: | 1 = >25 r
0 = NONE
BITION:
ALYSIS
GS:
GS: | n 2=10 <h
E 1=0%<</h
 | No A: T: 25 m 3 * CVR : 10% A: N = NO! R: YC | CCESS 2 2417:10 m 2 = 10
< C\ < 10 < 10 < 10 NE R DUNG | R . 25% A R . 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R < 60% | 25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50
OLD
GROWTH | No Acces | | 3 4 HT CV ST DE AB | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS AND ANDING SNA EADFALL / LO UNDANCE CODE DMM, AGE: DIL ANALYS EXTURE: DISTURE: | 1=>25 r
0= NONE
BITION:
ALYSIS
GS:
GS:
ES: | n 2 = 10 <h
E 1 = 0% < I</h
 | No A Tr. 25 m 3 ** CVR < 10% A N = NO! R YC DEPTH DEPTH | CCESS 24HT.10 m 2 = 10 < CV < 10 < 10 < 10 < 10 NE | R 25% A R R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R < 60% | 25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50 | No Acces | | ST DE AB | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS AN/ ANDING SNA/ EADFALL / LO UNDANCE CODI DMM. AGE: DIL ANALYS EXTURE: DMOGENEOUS | 1 = 28 r
0 = NONE
BITION:
ALYSIS
GS:
GS:
ES: | n 2 = 10 <h
E 1= 0% < 1</h
 | N = NOIR N = NOIR DEPTH DEPTH | CCESS 2 2417:10 m 2 = 10 < C\ < 10 < 10 < 10 NE R DUNG | R 25% A R R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R < 60% | 25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | No Acces | | 3 4 HT CV ST DE AB CC SC HC | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS AND ANDING SNA EADFALL / LO UNDANCE CODE DMM, AGE: DIL ANALYS EXTURE: DISTURE: | 1 = >25 r
0= NONE
BITION:
ALYSIS
GS:
GS:
ES: | PIONEEF | No A
T.25 m 3 **
CVR < 10%
N = NO!
DEPTH
DEPTH
DEPTH | CCESS 24HT.10 m 2 = 10 < CV < 10 < 10 < 10 < 10 NE | R 25% A R R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R < 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | No
Acces | | 3 4 HT CV ST DE AB CC ST MICH CC CC | GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS AN/ ANDING SNA/ EADFALL / LO UNDANCE CODI DMM. AGE: DIL ANALYS EXTURE: DMOGENEOUS DMMUNITYC | 1 = 23 f
0 = NONE
SITION:
ALYSIS
GS:
GS:
ES:
IS:
IS: | PIONEEF | N = NOI N = NOI DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH | < 10 < 10 < 10 < 10 NE R PUNG H TO MO H TO BEI | R 25% A A FRARE FRARE GANICS GROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
3: | R < 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: ABUND/ G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | No Acces | | 3 4 HT CV ST DE AB CC CC CC CC | GRD. LAYER CODES: R CODES CAND COMPOS CE CLASS AND CANDING SNACE CADFALL / LOCUMDANCE CODE COMM. AGE: COLL ANALYS COMMUNITY COMMUNITY COMMUNITY CO | 1 = 23 r
1 = 23 r
0 = NONE
SITION:
ALYSIS
GS:
GS:
ES:
IS:
LASS:
ASS: CRIES: | PIONEEF | N = NOI R YC DEPTI DEPTI DEPTI DEPTI DEPTI | <10 <10 <10 <10 NE - R H TO MO H TO BE | R 25% A R R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
3: | R < 60% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = / | BA: ABUNDA G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | No Acces | | 3 4 HT CV ST SE AB CC CC CC CC CC CC | GRD. LAYER CODES: R CODES: R CODES CAND COMPOS CE CLASS ANA CANDING SNACE CADFALL / LOCUMBANCE CODE COMM. AGE: COMM. AGE: COMMUNITY CLOMMUNITY CLOMMUNITY CLOMMUNITY SE COSITE: AS COSITE: AS CODES CO | I = >23 r b= NONE BITION: BITI | PIONEEF PIONEEF RIABLE FICATION Decic | DEPTH | < 10 < 10 < 10 < 10 NE R DUNG 1 TO BE | TTLES GANICS OROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
3: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | No Acces | | 3 4 HT CV ST SE AB CC CC CC CC CC CC | GRD. LAYER CODES: R CODES: R CODES CAND COMPOS CE CLASS ANA CANDING SNA CADFALL / LOCUMDANCE CODE COMM. AGE: COLL ANALYS COSTURE: COMMUNITY CL COMMUNITY CL COMMUNITY SE COSITE: AS | S / VAI | PIONEEF PIONEEF RIABLE FICATION Decic | DEPTH | < 10 < 10 < 10 < 10 NE R DUNG 1 TO BE | TTLES GANICS OROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
3: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH (cm) | No Acces | | 3 4 HT CV ST SE AB CC CC CC CC CC CC | GRD. LAYER CODES: R CODES: R CODES CAND COMPOS CE CLASS AND CANDING SNAME CADFALL / LOW UNDANCE CODE COMM. AGE: COMM. AGE: COMMUNITY COMMUNITY CL COMMUNITY SECOSITE: COSITE: COSITE: COSITE: COMMUNITY SECOSITE: COSITE: COMMUNITY SECOSITE: COSITE: COMMUNITY SECOSITE: COSITE: COMMUNITY SECOSITE: COSITE: COSITE: COMMUNITY SECOSITE: COSITE: COMMUNITY SECOSITE: COSITE: COSITE: COMMUNITY SECOSITE: COSITE: COSI | I = 23 r
1 = 23 r
0 = NONE
BITION:
ALYSIS
GS:
GS:
ES:
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | PIONEEF PIONEEF RIABLE FICATION Decic | DEPTH | < 10 < 10 < 10 < 10 NE R DUNG 1 TO BE | TTLES GANICS OROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
3: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH (cm) | No Acces | | ELC | SITE: T-Line | | |------------------|--------------------|--| | | POLYGON: Feature 3 | | | PLANT
SPECIES | DATE: | | | LIST | SURVEYOR(S): | | | 15 | LA | in the | 25/2007 | Dispersion acres on | DALLER SALES AND AND SOLES FOR THE SECOND SEC. | 2.35 | 1 75 77 | | | | |----------|-------|--------|------------|---------------------|--|---|---|---|---|-------| | | | 1.4 | Sept Brown | COLL | SPECIES CODE | | LA | YER | | | | 1 | 2 | 3 | 4 | | SPECIES CODE | 1 | 2 | 3 | 14 | COLL | | D | D | | 1 9 | | | | | | | | | | A | | | | | | | | | | | R | | | L II | | | | | | | | | | | | 9 | 0 | | | | | | | | | | | | | | | | | 77 | | | | | | | | | | | | | | | | | П | | | | | | | | | | | | | | | | | | L | | | | | | _ | ia . | | | | | | | | | | | | , fi | | | _ | | | | | | | | | | | _ | | | | | | 100 | | | | | | | | | | | | | | | | | | | Щ | | | | - | | | | | | | | | - | | | 100 | 2 | | 113 | | 7 May 27 - 1 | | | -8 | 19 | | | | 17.3 | | | | | | 16.6 | 1310 | | | | | | | - | | 7000=50037_1500000 | | | | | | | - | - | | | | | | - | | _ | | | - | | 10. | | Ong gir | HACHINE PERMANEN | | - | | 19011 | | | \dashv | 2 2 | | | | | \vdash | \dashv | | \dashv | | | | | | | uzmeji (552) izi il | | _ | 111 | | | ne ne | | | 29.11 | D D | D D A | D D A R | D D A R | D D A R A R A R A R A R A R A R A R A R | D D A R P P P P P P P P P P P P P P P P P P | D D A R R R R R R R R R R R R R R R R R | D D A R R R R R R R R R R R R R R R R R | D D | Page of | Stantec | 70-1 South | tario, Canada
36-6050 | Vaco po el | Wildlife Asses | | |--|---|--------------------------------------|--|--|---------------------| | Project Number | 01010646 | | Project Name | Samsung T-line :: Polygon ① | (represents | | Date / Time: | . 4. 10 | | Field Person | nel:
GAW | | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last 24 hrs: | | Reptile Hibernacu
ouried concrete or rock
ock crevices or inactive
Does the site cont
lescribe details in Ta | la Features i.e
(e.g. foundations,
panimal burrows) | e. features that we bridge abutments | ould provide a rou
s or culverts with c | te underground, incluracks/entry points, e | uding
xposed | | Bat Hibernacula F | eatures i.e. ka | rst topography, | abandoned min | es or caves | Unknown | | Ooes the site contescribe details in Ta | | bat hibernacı | ula features? | | | | Table 1: Potential | hat/reptile hit | pernacula fea | itures identifie | ed on site | | | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |-----
--|------------|--|--------------------------------------| | | ad in the ex | anles et f | a made the Tolley State of | | | n | The state of s | | The my resides who self | | | | | | The second secon | | **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | | | 2 | | | | / | 1 | | 1 | | / | | | | - | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | lland Ass | /: t - | | . 0 | 6 | | | | | |--|--|--|---|--------------------------------------|---|-----------|---|--------------------------------|---| | Wood | llot # (ind | licate o | on map) <u>:</u> | Polyg | on (9) | 15.7 | | | | | Appro | oximate a | ige of s | stand _ N | lidage | 2 | | | | | | If yes,
Locati
Are si | approximon in star
approximon in star
nags preservide char | nate # p
nd (i.e thr
sent? [
acterizati | resent or oughout, in | r % of
west sid
No
ber pres | standVer
le only, in FOI
sent, height a | 22-6 only | etc) from | n edge | if they | | | with cav | ities pr | esent? [| □ No | | Occas | ional | N | one Seen. | | = 1/3 UI | 15/4/10 L | tree | ranges of | DBH | je of Tree | Heigh | e of Cavity | Cavity size (approx. diameter) | | | | | Ser la | | 3.17 | | | | | | | | | Temperature and | | | 14 | | | | | | Prese
If yes, | UTM and | rge stic | k nests | | tor nests)?
eight and p | | i □ No
i in tree, siz | ze of nest | , | | Prese If yes, specie Evide If yes, | ence of la
UTM and
es present
nce of di
describe | rge stic | ck nests
be tree ty
nce? (i.e le | ogging, | eight and p | ATV use | n in tree, siz | | O Unknown | | Prese If yes, specie Evide If yes, | nce of la UTM and es present nce of di describe | rge stic | ck nests
be tree ty
nce? (i.e le | ogging, | eight and p | ATV use | in tree, siz | Yes 🗌 Ne | Unknown | | Prese If yes, specie Evide If yes, Seeps | nce of la UTM and es present nce of di describe | rge stic
d describ
t
sturbar
s prese | ck nests
be tree ty
nce? (i.e le | ogging, | roads, paths, | ATV use | , trails) | Yes 🗌 Ne | O Unknown | | Prese If yes, specie Evide If yes, Seeps Seep/S | nce of la UTM and es present nce of di describe s/ springs pring # | sturbar UTM | ck nests be tree ty nce? (i.e.le | ogging, | roads, paths, | ATV use | , trails) | Yes 🗌 Ne | O Unknown | | Prese If yes, specie Evide If yes, Seeps Seep/S | nce of la UTM and es present nce of di describe s/ springs pring # | sturbar UTM | ck nests be tree ty nce? (i.e.le | ogging, ogging, Desc | roads, paths, | ATV use | , trails) | Yes □ No | Unknown Unknown Unknown | | Prese If yes, specie Evide If yes, Seeps Seep/S | nce of la UTM and es present nce of di describe s/ springs pring # | sturbar UTM | ck nests be tree ty nce? (i.e.le nt? Yes | ogging, ogging, Desc | roads, paths, No ription | ATV use | yes, Surrounding Presence of emergent/su | Yes □ No | Unknown Unknown Unknown Unknown Presence of shr | | Prese If yes, specie Evide If yes, Seeps Seep/S | nce of la UTM and es present nce of di describe s/ springs pring # | sturbar UTM | ck nests be tree ty nce? (i.e.le nt? Yes | ogging, ogging, Desc | roads, paths, No ription | ATV use | yes, Surrounding Presence of emergent/su | Yes □ No | Unknown Unknown Unknown Unknown Presence of shr | | ELC | SITE: | | | | | | POLY | GON: (16) | | |
--|---|--|---------------------|---|---------------------------------------|---|---------------------------|--|-------------------------|---| | COMMUNITY
DESCRIPTION & | SURVE | YOR(S): | | | DATE | | | | UTME | | | CLASSIFICATION | START | | END | | | | UTMZ | A25 | UTMN: | | | POLYGON DES | SCRIP | TION | | | - | | | . I | | | | SYSTEM | SUB | STRATE | | POGRAPHIC
FEATURE | Н | ISTORY | PLA | NT FORM | COI | MMUNITY | | TERRESTRIAL WETLAND AQUATIC | ☐ PAR | ANIC
ERAL SOIL
ENT MIN.
DIC BEDRK. | O TE | CUSTRINE
VERINE,
OTTOMILAND
ERRACE
ULLEY SLOPE
BLELAND
IFF | | TURAL
LTURAL | SUE
FLO
GRA
DFOR | NIKTON
BMERGED
DATING-LVD.
AMINOID
RB
HEN
COPHYTE
CIDUOUS | LAKE PONI RIVE STRE | D
:R
EAM
SH
IMP | | SITE | ☐ CAR | B. BEDRK. | O TA | ILUS
REVICE / CAVE
VAR | - | COVER | COM | NIFEROUS | BARI
MEAI | REN
DOW | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | 175 | iko ar s | □ RC | EACH / BAR
IND DUNE | □ OP | RUB | | | THIC
 SAVA
 WOO | KET
ANNAH
ODLAND | | TAND DESCR | IPTIO | N: | | SPECIES | IN OR | DER OF D | ECRE | ASING DOI | MINAN | CF | | LAYER | HT | CVR | (>> | MUCH GREA | | | | | | | | CANOPY | 1-2 | 4 | ACES | SASA > | > QU | ERUB | R> | MICHAE | N T | | | SUB-CANOPY | 3 | 4 | 11 | reput > F | AGE | RAN | | | 4 | | | | | | | | | | | | | | | UNDERSTOREY GRD. LAYER T CODES: | | | | 3 = 2 <ht 10="" :="" m<="" th=""><th></th><th></th><th></th><th></th><th></th><th>■ HT<0.2 m</th></ht> | | | | | | ■ HT<0.2 m | | UNDERSTOREY GRD. LAYER T CODES: VR CODES | 6-7
1=>25 r
0= NONE | n 2 = 10 <h< td=""><td>IT- 25 m</td><td>3 = 2<ht-10 m<="" td=""><td>4=1<</td><td></td><td></td><td></td><td></td><td>■ HT<0.2 m</td></ht-10></td></h<> | IT- 25 m | 3 = 2 <ht-10 m<="" td=""><td>4=1<</td><td></td><td></td><td></td><td></td><td>■ HT<0.2 m</td></ht-10> | 4=1< | | | | | ■ HT<0.2 m | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS | 1 = >25 r
0= NONE | n 2 = 10 <h
E 1= 0% <</h
 | IT- 25 m | 3 = 2 <ht-10 m<="" td=""><td>4=1<</td><td></td><td></td><td></td><td></td><td>■ HT<0.2 m</td></ht-10> | 4=1< | | | | | ■ HT<0.2 m | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS | 1 = >25 r
0= NONE
SITION: | n 2 = 10 <h
E 1= 0% <</h
 | 17-25 m
CVR √ 10 | 3 = 2 <ht-10 m<br="">0% 2= 10 < C\</ht-10> | 1 4 = 1<
/R ← 25% | 3= 25 < CV | R < 50% | 4= CVR > 60% | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNAC EADFALL / LOC | 1 = >25 r
0= NONE
SITION:
ALYSIS
38: | n 2 = 10 <h
E 1= 0% <</h
 | T-25 m
CVR \ 10 | 3=2 <ht-10 m<br="">0% 2=10 < C1
< 10
< 10
< 10</ht-10> | 1 4 = 1<
/R ← 25% | 10 - 24
10 - 24
10 - 24 | R < 50% | 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | | > 50
> 50
> 50 | | B UNDERSTOREY I GRD. LAYER IT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC BEADFALL / LOC BUNDANCE CODE | 1 = >25 r
0= NONE
SITION:
ALYSIS
38: | n 2 = 10 <h
E 1= 0% <</h
 | T-25 m
CVR \ 10 | 3=2 <ht-10 m<br="">0% 2=10 < C1
< 10
< 10
< 10</ht-10> | A A | 10 - 24
10 - 24
10 - 24 | R < 50% | 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50
NT | | UNDERSTOREY GRO. LAYER IT CODES: EVR CODES GIZE CLASS ANA GRANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: | 1 = >25 r
0= NONE
GITION:
ALYSIS
3S:
SS: | 2 = 10cH
1 = 0% < | T-25 m
CVR \ 10 | 3 = 2 <ht 10="" m<br="">0% 2= 10 < CV
< 10
< 10
< 10
< 10
NONE · R</ht> | A A | 10 - 24
10 - 24
10 - 24
10 - 24 | R < 50% | 4= CVR > 60%
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50 | | UNDERSTOREY GRO. LAYER IT CODES: EVR CODES STAND COMPOS STANDING SNAC STANDING SNAC STANDING SNAC SEADFALL / LOC BUNDANCE CODE COMM. AGE: | 1 = >25 r
0= NONE
GITION:
ALYSIS
3S:
SS: | 2 = 10cH
1 = 0% < | T-25 m
CVR \ 10 | 3 = 2 <ht 10="" m<br="">0% 2= 10 < CV
< 10
< 10
< 10
< 10
NONE · R</ht> | A A RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0 | R < 50% | 4= CVR > 60%
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50
NT | | UNDERSTOREY GRO. LAYER TOODES: VR CODES TAND COMPOS TANDING SNAC TA | 1 = >25 r
0= NONE
SITION:
ALYSIS
38:
38:
58: | n 2= 10-H
E 1= 0% < | DEP | 3 = 2 <ht, 10="" m<br="">0% 2= 10 < C\
< 10
< 10
< 10
ione · R
Young</ht,> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIO | 4= CVR > 60%
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
NT
DLD
GROWTH | | UNDERSTOREY GRO. LAYER TOODES: VR CODES TAND COMPOS TANDING SNAC TA | 1 = >25 r
0= NONE
SITION:
ALYSIS
38:
38:
58: | n 2= 10-H
E 1= 0% < | DEP | 3 = 2 <ht, 10="" m<br="">0% 2= 10 < C\
< 10
< 10
< 10
ione · R</ht,> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIO | 4= CVR > 60%
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
NT
DLD
GROWTH | | UNDERSTOREY GRD. LAYER T CODES: VR CODES CODE | 1 = 25 f
0= NONE
SITION:
ALYSIS
3S:
5S:
5S: | PIONEER | N=N DEP DEP | 3 = 2 <ht, 10="" m<br="">0% 2= 10 < CV
< 10
< 10
< 10
NONE · R
YOUNG</ht,> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIO | 4= CVR > 60% 25 - 50 25 - 50 25 - 50 NAL A = A MATURE | BA: BUNDA G= | > 50
> 50
> 50
NT
DLD
GROWTH | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNACE BUNDANCE CODE OMM. AGE: OIL ANALYSI EXTURE: OMOGENEOUS COMMUNITY CL | S: S: LASSI ASS: | PIONEEF | DEP DEP DEP | 3 = 2 <ht, 10="" m<br="">0% 2= 10 < C\
< 10
< 10
< 10
NONE - R
YOUNG</ht,> | A A TTLES | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIO | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE | BA: BUNDA G= | > 50
> 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNAC EADFALL / LOC BUNDANCE CODE OMM. AGE: COIL ANALYSI EXTURE: COMMUNITY CLA COMMUNITY CLA COMMUNITY SEI COM | 1 = 25 r
0= NONE
SITION:
ALYSIS
SS:
SS:
SS:
SS:
SS:
SS:
SS: | PIONEEF | DEP DEP DEP DEP DEP | 3 = 2 <ht, 0%="" 10="" 2="10" <="" bee<="" c\="" m="" mo="" none="" of="" ore="" r="" td="" th="" to="" young="" ·=""><td>A A A A A A A A A A A A A A A A A A A</td><td>10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE</td><td>CCASIO</td><td>4= CVR > 60% 25 - 50 25 - 50 NAL A = A MATURE CODE:</td><td>BA: BUNDA G= FOR</td><td>> 50
> 50
>
50
NT
DLD
GROWTH
(cm)</td></ht,> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIO | 4= CVR > 60% 25 - 50 25 - 50 NAL A = A MATURE CODE: | BA: BUNDA G= FOR | > 50
> 50
> 50
NT
DLD
GROWTH
(cm) | | JUNDERSTOREY JU | SS: SS: ALYSIS SS: SS: SS: PE: | PIONEER RIABLE FICATION FOR | DEP DEP | 3 = 2 <ht, 0%="" 10="" 2="10" <="" bee="" c)="" de<="" die="" fo="" m="" mo="" none="" of="" ore="" r="" td="" th="" to="" us="" young="" ·=""><td>A A A TTLES GANICOROCCI</td><td>10-24
10-24
10-24
10-24
0-0
MID-AGE
MID-AGE</td><td>g =</td><td>25 - 50 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE:</td><td>BA: </td><td>> 50
> 50
> 50
> 50
NT
OLD
GROWTH
(cm)</td></ht,> | A A A TTLES GANICOROCCI | 10-24
10-24
10-24
10-24
0-0
MID-AGE
MID-AGE | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | JUNDERSTOREY GRO. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CL COMMUNITY CL COMMUNITY SEE ECOSITE: DF VEGETATION TY DF SUG | S: LASSI ASS: RIES: | PIONEEF | DEP DEP | 3 = 2 <ht, 0%="" 10="" 2="10" <="" bee="" c)="" de<="" die="" fo="" m="" mo="" none="" of="" ore="" r="" td="" th="" to="" us="" young="" ·=""><td>A A A TTLES GANICOROCCI</td><td>10-24
10-24
10-24
10-24
0-0
MID-AGE
MID-AGE</td><td>CCASIO</td><td>25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: CODE: CODE:</td><td>BA: </td><td>> 50
> 50
> 50
NT
DLD
GROWTH
(cm)</td></ht,> | A A A TTLES GANICOROCCI | 10-24
10-24
10-24
10-24
0-0
MID-AGE
MID-AGE | CCASIO | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: CODE: CODE: | BA: | > 50
> 50
> 50
NT
DLD
GROWTH
(cm) | | JUNDERSTOREY GRO, LAYER TO CODES: CVR CODES STAND COMPOS STANDING SNAC STANDING SNAC STANDING SNAC COMM. AGE: COMM. AGE: COMMUNITY CL COMMUNITY SEI COMMUNITY SEI COSITE: D-F VEGETATION TY | S: S: LASSI ASS: PE: ON | PIONEER RIABLE FICATION FOR | DEP DEP | 3 = 2 <ht, 0%="" 10="" 2="10" <="" bee="" c)="" de<="" die="" fo="" m="" mo="" none="" of="" ore="" r="" td="" th="" to="" us="" young="" ·=""><td>A A A TTLES GANICOROCCI</td><td>10-24
10-24
10-24
10-24
0-0
MID-AGE
MID-AGE</td><td>g =</td><td>25 - 50 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE:</td><td>BA: </td><td>> 50
> 50
> 50
> 50
NT
OLD
GROWTH
(cm)</td></ht,> | A A A TTLES GANICOROCCI | 10-24
10-24
10-24
10-24
0-0
MID-AGE
MID-AGE | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH
(cm) | No Access. | ELC | SITE: T-Line | |---------|--------------------| | PLANT | POLYGON: Feature 4 | | SPECIES | DATE: | | LIST | SURVEYOR(S): | LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT | SPECIES CODE | | LA | YER | | 54.4990 to 747 | A = ABUNDANT D = | | ~ | YER | | 1.40. | |--------------|-----------|----------|------------|---------|----------------|------------------|-------|---|-----|-----|-------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL. | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | Shaqbank | 0 | 0 | | | | | | | | | | | GUERUBR | A | 0 | | ιō | | | | | | | | | ACESASA | D | D | A | | | | | | | | | | FAGGRAN | 0 | A | A | | | R | | | | | | | TILAMER | 0 | 0 | | | | | | | | | | | | | | 247
444 | | | | | | | | | | | | | | a di | | | | | | | | | | | | | | | | 1702 | | 11 | | | | # | | | | + | | | | | | 121 | | | | | | | \perp | | | | | | | | | | | E ST | | + | | | | + | - | - | | | | | | | | | | | | -1 | | | | | | | + | + | | - n-u | | + | - | - | | | | Ē. | | | | | | | 1 | | | | | 10 | 100 | \dashv | - | + | | | | | _ | | | | matica com | l ax | | 3.P | | 2377 | as had no costs | | 1 | | | 3108 | | | | | | - | | | | 1 | | | | | | \exists | | | | SARTON III. R | | eth l | + | + | + | | | | | | \perp | | | | | | | | | | =1816 | | | | | = 1 | | | | | | | Page of | ELC | SITE: | 10101 | 0646 | | | | _ | ON: (15) | | | |---|---|--
--|---|--|--|---|--|----------------------------|--| | COMMUNITY | SURVE | ror(s): | SAW | | DATE: | Nov. | 4.10 | | UTME: | | | ESCRIPTION & LASSIFICATION | START: | | END | 1579 101 | . T. H. | | UTMZ: | | UTMN: | | | DLYGON DES | CRIP | TION | | V | | | | | | | | SYSTEM | | TRATE | | GRAPHIC
ATURE | HIS | TORY | PLAN | IT FORM | CO | AMUNITY | | TERRESTRIAL
WETLAND
AQUATIC | ☐ PARE | RAL SOIL | RIVER
BOTTO
TERR.
VALLE | OMLAND
ACE
EY SLOPE
ELAND
UPLAND | SNATU CULT | | GRAI GRAI GRAI GRAI GRAI GRAI GRAI GRAI | EN
OPHYTE
DUOUS | LAKE | D
R
EAM
SH
MP | | SITE | | B. BEDRK. | TALUS | S
ICE / CAVE | C | OVER | CON | FEROUS
O | MEA | RIE | | OPEN WATER
SHALLOW WATER | 11.24 | COLUMN TO SERVICE SERV | BEAC | CLAND
CH / BAR
DUNE | OPEN | | 3 | | SAV | ANNAH
ODLAND | | SURFICIAL DEP.
BEDROCK | 44 | 11.57 | BLUF | 10.00 | TREE | D | | | | VITATION | | TAND DESC | RIPTIO | N:
CVR | (>> MI | SPECIES
UCH GREA | IN ORD | ER OF I | DECREA | ASING DO
HAN; = AB | MINAN
OUT EC | ICE
IUAL TO) | | CANOPY | 4 | 3 | PICG | | 1 | muc ^e rr= | 1 | GHL/VIII.O | | arm T | | SUB-CANOPY | 5 | 4 | " | | LVE | 15.4 | | ALC: | | | | | | | | | | | | | | | | UNDERSTORE | 6 | 4 | CUMI | SP | | The state of | | | | | | GRD. LAYER | 7 | 4 | //
HT. 25 m .3 | <u>■ 2<ht√10 r<="" u=""></ht√10></u> | n 4 = 1< | 17-2m 5≠ | 0,5 <ht.1< th=""><th>m 6 = 0.2<h1< th=""><th>-0.5 m 3</th><th>= HT<0.2 m</th></h1<></th></ht.1<> | m 6 = 0.2 <h1< th=""><th>-0.5 m 3</th><th>= HT<0.2 m</th></h1<> | -0.5 m 3 | = HT<0.2 m | | GRD. LAYER
T CODES:
VR CODES | 7
1 = >25
8= NON | # 2 = 10<
E 1= 0% | //
HT. 25 m .3 | <u>■ 2<ht√10 r<="" u=""></ht√10></u> | n 4 = 1 <f
VR < 25%</f
 | 17-2 m 5 ≠
3= 25 < C' | 0.5 <ht:1
VR:: 60%</ht:1
 | m 6 = 0.2 <hi
4= CVR > 50°</hi
 | 0.5 m 1 | / = HT<0.2 m | | GRD. LAYER
T CODES:
VR CODES | 7
1=>25
8= NON | m 2 = 10<
E 1= 0% | //
HT. 25 m .3 | <u>■ 2<ht√10 r<="" u=""></ht√10></u> | n 4 = 1<1- | 17-2m 5 = 3= 25 < C | VR . 60% | m 6 = 0.2 <h1
4= CVR > 50
25 - 50</h1
 | * | > 50 | | GRD. LAYER F CODES: VR CODES TAND COMPO | 1=>25
0= NON
SITION | m 2 = 10<
E 1= 0% | //
HT-25 m 3
CCVR - 10% | = 2 <ht√10 r<br="">• 2≈ 10 < C</ht√10> | n 4=1<- | 3= 25 < C | VR . 60% | 4= CVR > 50 | * | | | GRD. LAYER F CODES: /R CODES TAND COMPO IZE CLASS AN TANDING SNA | 7
1=>25
0= NON
SITION
IALYSIS | m 2 = 10<
E 1= 0% | //
HT-25 m 3
CCVR - 10% | = 2<\f7.107
= 2= 10 < C | n 4=1<- | 3= 25 < C | VR . 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER CODES: /R CODES TAND COMPO ZE CLASS AN TANDING SNA EADFALL / LC | 1 = >25
8= NON
SITION
ALYSIS
GS:
GS: | m 2 = 10<
E 1= 0% | //
HT-25 m 3
CCVR - 10% | = 2 <ht,10 r<br="">= 2< HT,10 r
= 2= 10 < C
< 10
< 10
< 10</ht,10> | n 4=1 <h< td=""><td>10 - 24
10 - 24
10 - 24</td><td>VR . 60%</td><td>25 - 50
25 - 50
25 - 50</td><td>*</td><td>> 50
> 50
> 50
> 50</td></h<> | 10 - 24
10 - 24
10 - 24 | VR . 60% | 25 - 50
25 - 50
25 - 50 | * | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COD | 1 = >25
8= NON
SITION
ALYSIS
GS:
GS: | m 2 = 10<
E 1= 0% | //
HT: 25 m 3
CCVR \ 10% | = 2 <ht.10 r<br="">= 2<ht.10 r<br="">= 2= 10 < C
= 10
= 10
= 10
= 10
= 10
= 10</ht.10></ht.10> | VR , 25% | 10 - 24
10 - 24
10 - 24 | VR . 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA DEADFALL / LC BUNDANCE COE COMM. AGE: | 1 = >25
0= NON
SITION
SITION
ALYSIS
GS:
DES: | L | N = NC | < 10 < 10 < 10 ONE - R | VR , 25% | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50
ANT | | GRD. LAYER CODES: /R CODES TAND COMPO ZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COD OMM. AGE: | 1 = >25
0= NON
SITION
SITION
ALYSIS
GS:
DES: | L | N = NC | <pre></pre> | NR , 25% | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE | VR . 60% | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | GRD. LAYER F CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COD COMM. AGE: COL ANALYS EXTURE: ROISTURE: | 1 = >25
6= NON
SITION
SALYSIS
GS:
DGS:
DES: | 2 10<
E 1= 0% - | N = NC DEP1 DEP1 | = 2-HT, 10 r = 2-HT, 10 r = 10 < C < 10 < 10 < 10 OUNG TH TO MC TH OF OF | R = RARE | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | GRD. LAYER F CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COD COMM. AGE: COL ANALYS EXTURE: ROISTURE: | 1 = >25
6= NON
SITION
SALYSIS
GS:
DGS:
DES: | 2 10<
E 1= 0% - | N = NC DEP1 DEP1 | <pre></pre> | R = RARE | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LC BUNDANCE COC COMM. AGE: GOIL ANALYS TEXTURE: HOMOGENEOL | 1 = >25
0= NON
SITION
SITION
ALYSIS
GS:
DES:
DES:
DES:
DES:
DES:
DES:
DES: | PIONEE | N=NC R PP1 DEP1 DEP1 DEP1 DEP1 DEP1 | = 2-HT, 10 r = 2-HT, 10 r = 10 < C < 10 < 10 < 10 OUNG TH TO MC TH OF OF | R = RARE | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A= | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA DEADFALL / LC BUNDANCE COC. COMM. AGE: COMM. AGE: HOMOGENEOU COMMUNITY C | T = >25
0= NON
SITION
SITION
ALYSIS
GGS:
DGS:
DGS:
DES: | PIONEE | N = NC R DEPT D | < 10 < 10 < 10 ONE · R OUNG | R = RARE | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE
3/GLEY
SS: | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A= | BA: ABUND G= | > 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA DEADFALL / LC BUNDANCE COC COMM. AGE: COMM. AGE: COMMUNITY COMMUNITY C | 7
1=>25
0= NON
SITION
SITION
GS:
DES:
DES:
DES:
LASS:
ERIES: | PIONEE PIONEE ARIABLE Cul- | N = NC | < 10 < 10 < 10 ONE · R OUNG | R = RARE | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A =
MATURE | BA: ABUND G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | GRD. LAYER IT CODES: EVEN CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LC ABUNDANCE COC COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY S | T = >25
0=
NON
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITION
SITIO | PIONEE | DEPTION: DEPTION: DEPTION: DEPTION: DEPTION: DEPTION: DEPTION: DEPTION: | < 10
< 10
< 10
< 10
ONE - R
OUNG | TERREDITILES | 10 - 24 10 - 24 10 - 24 0 = MID-AGE 8/GLEY SS: K: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: ABUND G= CU CU CU | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | | GRD. LAYER IT CODES: EVEN CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO ABUNDANCE COC COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY C COMMUNITY C COMMUNITY S ECOSITE: C | T = >25
0= NON
SITION
SITION
SITION
SITION
GGS:
DGS:
DGS:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES:
DES: | PIONEE PIONEE ARIABLE Cub Cub | DEPTION: | < 10
< 10
< 10
< 10
ONE - R
OUNG | TERRE DITTLES | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE
8/GLEY
SS:
K: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: ABUND G= CU CU CU | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | A GRD. LAYER IT CODES: CVR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LC ABUNDANCE COC COMM. AGE: MOISTURE: MOISTURE: HOMOGENEOU COMMUNITY COMMUNITY C COMMUNITY S ECOSITE: C | January 1 = >25 0= NON SITION SITIO | PIONEE PIONEE ARIABLE Cub Cub | DEPTION: | < 10
< 10
< 10
< 10
ONE - R
OUNG | TERREDITILES | 10 - 24
10 - 24
10 - 24
0 =
MID-AGE
8/GLEY
SS:
K: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: ABUND G= CU CU CU | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | | ELC | SITE: Transmission Line | |------------------|-------------------------| | | POLYGON: Feature 6 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | | | LA | ÆR. | | COLL. | SPECIES CODE | . Eyo | LA | YER | | COLL | |--------------|----------|----------|-----|-----|---------------|--|--------|--------------|-----|---|--------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL. | W. C. S. | 1 | 2 | 3 | 4 | COLL | | Nht. spruce | D | A | | = 1 | × | CUM1 SPP | | | H | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | + | - | | | | | + | | | | | | | \vdash | | | | | | - | | | | | | | + | | - | | | | + | | | | | | ш = | - | | | | | | + | - | | - | | | | | | | | | | + | | | | | | | | | | 1-1 | | | | | | | = 11 | | | | | | | | | | | | | | | | | = 17 | | | | | | | | | | | • | | M | | | | | | | | | | | _ = = = 0 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | +- | | | | | | + | - | - | Н | | | | +- | | | | | | + | \vdash | - | | | | | - | | _ | | | | - | | - | | | | | - | | _ | _ | | | +- | - | - | | | | | | | | | | | \bot | | _ | | | | | | | | | | | _ | | _ | | 53. 17 | | | 1 | | | | | | | | | | | | | | | | 12 | - | | | | | | | | | | | | | | | | | 1 | | | | | y. | 0 | | T | 370 | mupanio-Faus | | | | | Chara | | | + | 118 | 119 | | | | | | | | | | | + | - | | | | | + | - | | | | | | - | \vdash | | | | | - | - | 10 | | | | | - | - | | - | | | - | | _ | | | | | 72 | _ | | | OF THE PERSON | | | _ | | | | | | | | | | 110-170-0 | | | | | | | Nov. 4.10 #### Client/Project SAMSUNG C&T GRAND RENEWABLE ENERGY PARK Figure No. FIELD MAP 3 TRANSMISSION LINE -**MAPBOOK** | Stantec | 70-1 Sout
Guelph, C
N1G 4P5
Tel: (519) | onsulting Ltd.
hgate Drive
Ontario, Canada
836-6050
) 836-2493 | | | Habitat
sment
T-line | |---|--|--|----------------------|------------------------|----------------------------| | Project Number | 61010646 | y awa 5 daya - | Project Name | : Samsung | | | Date / Time: | . 4.10 | | Field Person | nel: GAW | | | Weather
Conditions: | Temp: | Wind: | Cloud: 1007. | PPT:
light rain | PPT in last
24 hrs: | | Reptile Hibernacus puried concrete or rock ock crevices or inactive Does the site confidescribe details in Ta | (e.g. foundations
animal burrows
tain potentia | s, bridge abutment
) | s or culverts with c | racks/entry points, ex | xposed
Unknown | Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |-----|-----------------|---------|-------------------|--------------------------------------| | | | , ti | n renewal and the | | | | | | | | | | #11245-70 | D. T. | | | Unknown ## **Species Observations** describe details in Table 1). List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE =
feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |----------------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | a | 7 | / | | | BCCH
BLJA
NOHA | | | | | | | - " | | | | ## Woodland Assessment- complete 1 assessment for each woodland Woodlot # (indicate on map) : Polygon (2) Approximate age of stand Mature Are large (i.e. >40cmDBH and >25m tall) trees present Yes No Name Seen If yes, approximate # present or % of stand _ Location in stand (i.e throughout, in west side only, in FOD2-6 only etc..) None seen Are snags present? Yes No If yes provide characterization of number present, height and DBH of snags and indicate if they contain loose bark. Trees with cavities present? No Rare Occasional Abundant Unknown If present: Range of Tree Range of Cavity Cavity sizes Height ranges of Heights (approx. DBH tree diameter) BAT MAT Roost? None Seen Presence of large stick nests (i.e. raptor nests)? Yes No If yes, UTM and describe tree type, height and position in tree, size of nest, Unknown species present Evidence of disturbance? (i.e logging, roads, paths, ATV use, trails) Yes No If yes, describe_ Unknown Seeps/ springs present? Yes No If yes, Surrounding Habitat Seep/Spring # Description UTM Unknown Vernal Pools Present? ☐ Yes ☐ No Presence of shrub Location Depth of water Size of pool Presence of emergent/submergent logs at pond edge (diameter) veq? | ELC | | | | | | | 1 | GON: (12) | , | | |--|--|---|--|---|--|---|----------------------------------
--|--------------------------|---| | COMMUNITY | SURVE | YOR(S): | BW | v | DATE: | | | ` | UTME: | | | DESCRIPTION & CLASSIFICATION | START | | EN | ID | | | UTM | | UTMN: | | | POLYGON DES | SCRIP | TION | 11 | | | | | | | | | SYSTEM | SUB | STRAT | ET | OPOGRAPHIC
FEATURE | HISTO | RY | PLA | NT FORM | COI | MMUNITY | | TERRESTRIAL WETLAND AQUATIC | ☐ PARI | ANIC
ERAL SOIL
ENT MIN.
BIC BEDRIK
C BEDRIK | | LACUSTRINE RIVERINE BOTTOMILAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND CLIFF | CULTUR | | GR
GR
GR
GR
GR
GR | | LAKI PON RIVE STRI | ID
:R
EAM
:SH
:MP | | SITE | CAR | B. BEDRK | | TALUS
CREVICE / CAVE | cov | ER | - CO | NIFEROUS | ☐ BARI
☐ MEA
☐ PRA | DOW | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | | 1891 | | ALVAR
ROCKLAND
BEACH / BAR
SAND DUNE
BLUFF | OPEN SHRUB | | | | SAV | KET
ANNAH
ODLAND | | STAND DESCR | RIPTIO | N: | | From Fales (To | 200 E 1 E 1 | ie. | 11- | | | | | LAYER | нт | CVR | (> | SPECIES > MUCH GREA | | | | ASING DOI
THAN; = ABG | | | | CANOPY | 1-2 | 410 | ACE | SASA >> 6 | Duercus | >FI | RAP | NN | 2 | = 51652 | | SUB-CANOPY | 3 | 4 | // | | AGGRA | | 31-8 | -0.5 TX | | | | UNDERSTOREY | 4-5 | 4 | 11 | > . | 11 | 7-8- | | | 1 | | | GRD LAVER | 16-7 | | 100 | | | | | | | | | T CODES: | 0= NONE | | | m 3 = 2 <ht; 10="" m<br="">. 10% 2= 10 < C\</ht;> | | | | | | ≈ HT<0.2 m | | T CODES:
CVR CODES | 1 = >25 m
0= NONE | 1= 0% | CVR V | 10% 2= 10 < CV | /R 、25% 3= | 25 < CVF | R < 60% | 4= CVR > 60% | <u> </u> | | | T CODES: EVR CODES STAND COMPOS SIZE CLASS ANA | 1 = >25 m
0= NONE
BITION: | 1= 0% | | 10% 2= 10 < CV | A 10 | 25 < CVF | | 4= CVR > 60% | <u> </u> | > 50 | | T CODES: VR CODES STAND COMPOS SIZE CLASS ANA | 1 = >25 m
0= NONE
BITION:
ALYSIS
3S: | 1= 0% | CVR V | 10% 2= 10 < CV | A 10 | 1 - 24
1 - 24 | R < 60% | 4= CVR > 60%
25 - 50
25 - 50 | <u> </u> | > 50 | | T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNAC DEADFALL / LOC | 1 = >25 m
0= NONE
BITION:
ALYSIS:
3S: | 1= 0% | A | - < 10 < 10 < 10 < 10 | A 10 | 1 - 24
1 - 24
1 - 24 | R < 60% | 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | <u> </u> | > 50
> 50
> 50
> 50 | | T CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE | 1 = >25 m
0= NONE
BITION:
ALYSIS:
3S: | 1= 0% | A N = | - < 10 < 10 < 10 < 10 | A 10 10 10 RARE | 1 - 24
1 - 24
1 - 24 | CCASIC | 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50
NT | | HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: | 1 = >25 m
0= NONE
SITION:
ALYSIS
GS:
GS: | 1=0% | A N = | <pre>- < 10</pre> | A 10 10 10 RARE | 1 - 24
1 - 24
1 - 24
0 = 0 | CCASIC | 4= CVR > 60% 25 - 50 25 - 50 25 - 50 NAL A = A | BA: | > 50
> 50
> 50
> 50 | | TCODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: | 1 = >25 m
0= NONE
SITION:
ALYSIS
GS:
GS: | 1=0% | A N = | <pre>- < 10</pre> | A 10 10 10 RARE | 1 - 24
1 - 24
1 - 24
0 = 00
AGE | CCASIC | 4= CVR > 60% 25 - 50 25 - 50 25 - 50 NAL A = A | BA: | > 50
> 50
> 50
> 50
NT | | ET CODES: EVEN CODES STAND COMPOS STANDING SNAC SNAC STANDING SNAC STANDING SNAC SNA | 1 = >25 m
0= NONE
SITION:
ALYSIS
GS:
GS: | 1=0% | A N = | < 10 < 10 < 10 < NONE - R = YOUNG | A 10 10 RARE | 1 - 24
1 - 24
1 - 24
0 = 00
AGE | CCASIC | 4= CVR > 60% 25 - 50 25 - 50 25 - 50 NAL A = A | BA: | > 50
> 50
> 50
> 50
NT | | IT CODES: EVEN CODES STAND COMPOS STANDING SNAC SNAC STANDING SNAC SNA | 1 = >25 n
0= NONE
BITION:
ALYSIS
GS:
GS:
SS: | PIONEE | A N = R DE | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 10 RAE MID- TTLES / GI GANICS: | 1 - 24
1 - 24
1 - 24
0 = 00
AGE | CCASIC | 4= CVR > 60% 25 - 50 25 - 50 25 - 50 NAL A = A | BA: | > 50
> 50
> 50
NT
OLD
GROWTH | | TODES: CYR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: SOIL ANALYSI EXTURE: HOMOGENEOUS COMMUNITYC | T = >25 n
0=
NONE
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
BITION:
B | PIONEE | N= R DB DE DB | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 10 RAE MID- TTLES / GI GANICS: | 1 - 24
1 - 24
1 - 24
0 = 00
AGE | CCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A
MATURE | BA: BUNDA G= | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | ET CODES: EVR CODES STAND COMPOS STANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: SOIL ANALYSI EXTURE: HOMOGENEOUS COMMUNITY CL | T = >25 n
0= NONE BITION: ALYSIS GS: GS: GS: LASSI ASS: F | PIONEE RIABLE FICAT OVES | N=R DE | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 A 10 R 25% J= A 10 TO 10 RARE MID MID TTLES / GI GANICS: DROCK: | 1 - 24
1 - 24
1 - 24
0 = 00
AGE | CCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A
MATURE | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | TODES: EVEN CODES STAND COMPOS STANDING SNAC SNAC STANDING SNAC SNA | T = >25 n
0= NONE
BITION:
ALYSIS
3S:
3S:
S:
S:
LASSI
ASS: FRIES: | PIONEE RIABLE FIGAT OVES DECIG | N= N= DE DE DE LON: | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 10 10 10 10 TILES / GI GANICS: DROCK: | 25 < CVF | CCASIC | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: T CODE: 1 | BA: G= | > 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | STAND COMPOS STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: SOIL ANALYSI EXTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEI ECOSITE: D | T = 28 n OE NONE BITION: BITIO | PIONEE RIABLE FIGAT OVES DECIG | N= N= DE DE DE LON: | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 10 10 10 10 TILES / GI GANICS: DROCK: | 25 < CVF | CCASIC | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: T CODE: 1 | BA: | > 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | AT CODES: CVR CODES STAND COMPOS STAND COMPOS STANDING SNAC SOMM. AGE:
SOIL ANALYS! TEXTURE: MOISTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SE ECOSITE: D-F VEGETATION TY | T = >25 m on No. | PIONEE PIONEE PIONEE PIONEE AT 1 | N= N= DE DE DE LON: | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 10 10 10 10 TILES / GI GANICS: DROCK: | 25 < CVF | CCASIC | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: C | BA: G= | > 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE | THE SET ON NEW YORK THE STREET ON NEW YORK THE SET | PIONEE PIONEE PIONEE PIONEE AT 1 | N= N= DE DE DE LON: | < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 | A 10 10 10 10 10 TILES / GI GANICS: DROCK: | 25 < CVF | CCASIC | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: CO | BA: G= | > 50
> 50
> 50
NT
OLD
GROWTH
(cm) | NOHA | ELC | SITE: T-Line | | |------------------|---------------------|--| | | POLYGON: Feature 10 | | | PLANT
SPECIES | DATE: | | | LIST | SURVEYOR(S): | | LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT | SPECIES CODE | LAYER | | COLL. 5 | SPECIES CODE | LAYER | | | | -/ | | | |-----------------|-------|---------|---------|--------------|-------|------------------|---|---|--------|--------|------| | | 1 | 2 | 3 | 4 | CULL | SPECIES CODE | 1 | 2 | 3 | 4 | COL | | FAGGRAN | 0 | A | A | _0 | | | | | | | - | | FRAPENN | A | | nies n | | | | | | | | | | ACESASA | D | Þ | D | | | | | | | | | | Shaqbark | 0 | HG 1 | | | | | | | | | | | THAMER | 0 | | | | | | † | | | | | | OSTVIRG | | 0 | | | | | | | | | | | QUERUBR | A | | | | W | | | | | | | | QUEMACR | Α-(| 5 | | | | | | | | | | | | | - | - | + | | | | | | | | | | | | | | | | | | | -2 | 1 | | | | 1 | | | | | | | - 6 | | 1 | | | | | | | | | | | | 4 | 1 | | | | | | | | | | | 4 | | | | | | | ::::: | | | | | | | | | | | | | | T | | | | | | | 1 | | | | | | | _ | | | | | | \perp | | | | | | | | | | | \perp | _ | | | | e a li presenta | 1.89 | | | | 6.99= | E La Escat Phone | | | 4 | T | -0-1 | T | | | | | | | | _ | - | | | | | \top | \top | | | | -=1 | | | | | | | | | - | | | =31 | | T | T | T | | | | 1 | \top | \top | | Page of | | ELC | SITE: | 161010 | 1646 | , | | | POLYG | ON:(11) | 11. | E. E.Y. | | | | |----|--|----------------------|---|--|--|----------|---|-----------|---|---|--|--|---|--| | | OMMUNITY | | (OD/O) | 3 AV | | DATE: | Nov. | 4.10 |) | UTME | . H | | | | | E | SCRIPTION & ASSIFICATION | START: | | END | A STATE | | | UTMZ: | | UTMN | - | | | | | | LYGON DES | CRIPT | ION | - 11 | Angelia E | | | | 16 | | | | | | | _ | SYSTEM | | TRATE | | GRAPHIC
ATURE | HIS | TORY | PLAN | IT FORM | co | MMUNITY | | | | | W | ERRESTRIAL
/ETLAND
QUATIC | MINE PARE ACIDI BASK | ORGANIC MINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. | | ANIC LACUSTR RAL SOIL BOTTOMI. TERRACE VALLEY S C BEDRK. ROLL UF | | RINE
TOMLAND
RACE
EY SLOPE
ELAND
L UPLAND
F | - | CULTURAL | | PLANKTON SUBMERGED FLOATING-LVD. GRAMINOID FORB LICHEN BYOPHYTE DECIDIOUS CONIFEROUS | | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG BARREN | | | | SITE | CARI | B. BEDRK. | | VICE / CAVE | C | OVER | MIXE | | D PR | ADOW
AIRIE | | | | | Ps | PEN WATER
HALLOW WATER
JURFICIAL DEP.
JEDROCK | | | ALVAR ROCKLAND BEACH / BAR SAND DUNE SLUFF | | OPE | UB | | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | | | | | | _ | AND DESCR | RIPTIO | N: | | | 412 | U EA | | | | | | | | | L | LAYER | HT | CVR | (>> ₩ | IUCH GREA | ATER TH | AN; > GR | EATER T | ASING DO
HAN: = AB | OUTE | NCE
QUAL TO) | | | | | ſ | CANOPY | 1-2 | | ACES | ASA >> | FAG | GRAN | 1>01 | UERUB | R | The state of | | | | | ľ | SUB-CANOPY | 3 | 4 | - 11 | > | " | E 11 | | | | | | | | | | UNDERSTOREY | 4.5 | 4 | FAG | GRAN | | <u> </u> | | | | | | | | | | GRD. LAYER
CODES: | 6-7 | | | - 6-10F 16 | - 1= 12 | 17.2 m 5 m | n Selft 1 | m 6 = 0.2 <h< td=""><td>1.0.5 m</td><td>7 = HT<0.2 m</td></h<> | 1.0.5 m | 7 = HT<0.2 m | | | | | _ | AND COMPO | | | A | < 10 | Α | 10 - 24 | 0 | 25 - 50 | | > 50 | | | | | 7 | ANDING SNA | GS: | | | < 10 | | 10 - 24 | _ | 25 - 50 | - | > 50 | | | | | | ADFALL / LO | | | N = N | < 10
ONE : F | R = RARE | 10 - 24 | OCCASI | 25 - 50
ONAL A = | ABUNI | > 50
DANT | | | | | _ | MM. AGE : | | PIONEE | ₹ | roung | | MID-AGE | | MATURE | | OLD
GROWTH | | | | | | OIL ANALYS | IS: | | | | | | 1 | | Jo- | | | | | | | XTURE: | | | | TH TO MO | | | g = | | G= | (cm) | | | | | | OISTURE: | 0 / 1/4 | DIADIE | | TH OF OF | | | | | | (cm) | | | | | | | | | | | 12 | 1 | | | | | | | | | | OMMUNITY C | | | | | | 201-01 | | CODE: | FC |) well | | | | | | OMMUNITY S | | | | us For | rest | | | CODE: | Fo | D | | | | | ~ | COSITE: D- | | | | - | | rest | 1116 | CODE: | FC | D5 | | | | | V | EGETATION TO | YPE: | naple | - k | | | | rest | CODE: | For | 5-2 | | | | | = | INCLUS | | _ | | | | | | CODE: | | | | | | | | | 1 1 1 1 1 1 1 | STEWART | | | | | | CODE: | | 12 9010 | | | | | | COMP | | TRINE | | | | - 1/ | | | | | | | | | 1 | otes: No | | | | | me s | mall c | ries. | | | | | | | | | No la | rage to | rees s | seen. | | | | | | | | | | | | | No | | | | | | | | | | | | | | | | NO | ACCC | :27. | | | | | | | | | | | | | ELC | SITE: Transmission Line | |------------------|-------------------------| | | POLYGON: Feature 11 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | LAYER | | COLL | SPECIES CODE | LAYER | | | | COLL. | | | |--------------|-------|-------|--------|--------------|---------|--------------|-----|-----|-------|----|-------| | | 1 | 2 | 3 | 4 | COLL | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | ACESASA | D | Α | A | | | | | | | | | | FAGGRAN | Α | Α | Α | | | | | - 1 | | | | | QUERUBR | Α | | | | | | | | | | | | FRAPENN | 0 | | | | | | | | | 4 | | | PRUSERO | 0 | | | | | | | m= | | | | | TILAMER | 0 | | 11 | | | | - | | | | | | | | | 4-(1)- | | | | | | | | | | | | - | | | | | | | | | | | | | en'il | | | | | | | | | | | | | | | _ | | | 133 | | | 17 | = - | | | | | | | | | | | | | | | | - | - | 1000 | | | | - | | | | | | | | | | | | | + | | | | | | | . 12 | | 1 23 | | | | | | | | 8 = - | | | | | | | | | - | | | E | | | | | | | | =8-22-= | | | | | - | | | | | | | -8 | See S | T. NEW 200 | + | 73 | | | 485 | | | 1750 | | | | | | | | , n | | | | | + | - | | - | | | + | | _ | - | | | | +- | | | -00 | DAME. | 4. | + | - | - | - | | Page of | TA | | |--------|----|
 1/3 | | | Stante | *C | Stantec Consulting Ltd. 70-1 Southgate Drive Guelph, Ontario, Canada Feature 11 | Stantec | N1G 4P5
Tel: (519) | 836-6050
) 836-2493 | | | ssment T-line | |--|-------------------------------------|---|--------------------|--|--------------------------------| | Project Number | 61010646 | wand paper | Project N | lame: Samsung | | | Date / Time: | 4.10 | th Mh-19Ut- | Field Per | rsonnel: GAW | | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last
24 hrs:
Rain | | ouried concrete or rock ock crevices or inactive | (e.g. foundations
animal burrows | s, bridge abutme
s) | nts or culverts v | a route underground, inc
with cracks/entry points,
cures? | exposed | | describe details in Ta
Fable 1: Potential | tain potentia
ble 1). | l bat hiberna
nibernacula f | cula feature | es? ☐ Yes ☐ No (if | Unknown Unknown yes, Species | | JTM | type | | o# Des | cription | observed usir feature | | | 7 4 6 6 | ======================================= | in te milit e page | The factor of the second th | 149
140 | | | 95 11 2 | 45 | | an in department of the | kri. | | | | THE TOTAL STREET | | | HS. | | | of observation | | |) = vocalization, OB = eggs, nest, HO = h | | | Birds | Mamm | nals | Herps | Butterflies /
Dragonflies | Other | | e. AMRO/VO | / | | / | | | | | | | | | | | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | 7 | , | | | | 1 | | 1- | # Woodlot # (indicate on map) : Polygon (1) Approximate age of stand Mature Are large (i.e. >40cmDBH and >25m tall) trees present Yes No None Seen If yes, approximate # present or % of stand ____ Location in stand (i.e throughout, in west side only, in FOD2-6 only etc..) Are snags present? ✓ Yes No If yes provide characterization of number present, height and DBH of snags and indicate if they contain loose bark. Small ones only; loose bank vare. Trees with cavities present? \[\] No \[\] Rare \[\] Occasional \[\] Abundant \[\] Nome Seen If present: Height ranges of Range of Tree Range of Cavity Cavity sizes DBH Heights (approx. tree diameter) Bat Mat Roost? None seen Presence of large stick nests (i.e. raptor nests)? ☐ Yes ☐ No Unknown If yes, UTM and describe tree type, height and position in tree, size of nest, species present Evidence of disturbance? (i.e logging, roads, paths, ATV use, trails) Yes No If yes, describe_ Seeps/ springs present? Yes No If yes, Seep/Spring # UTM Description Surrounding Habitat Unknown Vernal Pools Present? ☐ Yes ☐ No If yes, Depth of water Location Size of pool Presence of Presence of shrubs, (diameter) emergent/submergent logs at pond edge veg? Woodland Assessment- complete 1 assessment for each woodland | 1/1 | |--------------| |
Charakaa | Stantec Consulting Ltd. 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Feature 12 # Wildlife Habitat **Assessment** Stantec Fax: (519) 836-2493 Polygon 10 T-line Project Name: **Project Number** Samsung 161010646 Field Personnel: Date / Time: GAW Nov. 4.10 PPT: PPT in last Wind: Cloud: Temp: Weather 24 hrs: 10° 100%. light rain 2 Conditions: Rain | Reptile Hibernacula Features i.e. features that would provide a route underground, including buried concrete or rock (e.g. foundations, bridge abutments or culverts with cracks/entry points, expostrock crevices or inactive animal burrows) | | |--|---------| | | | | Does the site contain potential reptile hibernacula features? Yes No (if y describe details in Table 1). | es, | | Bat Hibernacula Features i.e. karst topography, abandoned mines or caves | Unknown | | Does the site contain potential bat hibernacula features? Yes No (if yes, describe details in Table 1). | | | | | Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |----------------|-----------------|-------------|--------------------------|--------------------------------------| | of Drei Harris | A MARIE MAR | yazzet e di | Topographic to sense 148 | | | and a second | | | | | | | | F-111 | rale . Timie . A set | | **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|--------------|-------|------------------------------|-------| | i.e. AMRO/VO | Gr. Squirrel | / | 1 | 117 | | | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | tand <u>№</u> | ' | | | | | | |---|---|--|--|---------------------|-------------------------------|-----------|---------------------|-------------------------------------|-------------| | If yes, | approxin | nate # p | resent or | % of | stand <u>Sc</u> | Hered | Yes No | | | | Location | on in star | nd (i.e thro | oughout, in v | west sid | e only, in FOE | 02-6 only | / etc) | r edge. | | | If yes pr
contain | ovide char
loose bark | acterizati
. One la | Yes I on of numberge, hollowse bould | per pres | sent, height a
med. caviti | and DBI | of snags an | nd indicate i | f they with | | | with cav | | | | ☐ Rare 🔯 | Occas | ional 🗌 Abı | undant | | | ermin #/ | ke grasi | Height
tree | ranges of | Rang
DBH | e of Tree | Rang | ge of Cavity
hts | Cavity siz
(approx.
diameter) | | | | i syv Li | 7-20 | m | 15- | 45 cm | 3-1 | om | medium | | | See Ak | DONE | | | | | | | | | | See Ak | DOVE | | | | | letter t | | | 1 | | Mat F | Roos†? | Possibl | k nests | (i.e. rap | tor nests)? | | | | Seen | | Mat F
Presei
If yes,
specie | nce of la
UTM and
s presen | Possiblinge sticed describ | ek nests
be tree ty | (i.e. rap | eight and p | ositior | n in tree, siz | ze of nest | | | Mat Fresei If yes, specie Evider | nce of la
UTM and
s presen | Possible rge stick describe the sturban | e k nests pe tree ty | (i.e. rap | eight and p | OSITION | n in tree, siz | ze of nest | | | Presei
If yes,
specie
Evider
If yes, | Cros+? nce of la UTM and s presen nce of di describe | Possible rge stic describe t sturbar Extens | e k nests
be tree ty
nce? (i.e k | (i.e. rap | eight and p | ATV use | n in tree, siz | ze of nest
Yes □ No | ,
D | | Presei
If yes,
specie
Evider
If yes, | nce of di
UTM and
s presen
nce of di
describe | Possible rge stic describe t sturbar Extens | e k nests
be tree ty
nce? (i.e k | (i.e. rap | roads, paths, | ATV use | n in tree, siz | ze of nest Yes □ No | | | Mat Fresei If yes, specie Evider If yes, Seeps | nce of di
UTM and
s presen
nce of di
describe | Possible rge stice describe t sturbare Extens s preser | e k nests
be tree ty
nce? (i.e k | (i.e. rap | roads, paths, seen in e | ATV use | n in tree, siz | ze of nest Yes □ No | ,
D | | Mat Fresei If yes, specie Evider If yes, Seeps | nce of di
UTM and
s presen
nce of di
describe | Possible rge stice describe t sturbare Extens s preser | e k nests
be tree ty
nce? (i.e k | (i.e. rap | roads, paths, seen in e | ATV use | n in tree, siz | ze of nest Yes □ No | ,
D | |
Presei
If yes,
specie
Evider
If yes,
Seep/Sp | rce of la
UTM and
s present
nce of di
describe
/ springs | Possible rge stice describe sturban Extens presei | e k nests
be tree ty
nce? (i.e k | ogging, i | roads, paths, seen in e | ATV use | n in tree, siz | Yes No | ,
D | | Presei If yes, specie Evider If yes, Seeps Seep/Sp | rce of la
UTM and
s present
nce of di
describe
/ springs | Possible rge stick describe sturbar Extenses present | ek nests pe tree ty nce? (i.e k | (i.e. rapipe, here) | roads, paths, seen in e | ATV use | n in tree, siz | Yes No | nown | | Stantec | 70-1 Sout
Guelph, C
N1G 4P5
Tel: (519) | Consulting Ltd.
Ingate Drive
Ontario, Canada
836-6050
) 836-2493 | Hark G | | e Habitat
ssment | |---|--|--|----------------------|--|------------------------------| | Project Number | 61010646 | | Project Na | , , | | | Date / Time: | 1.4.10 | U ₁ W ₂ u ₂ | Field Perso | onnel: | | | Weather
Conditions: | Temp: | Wind: | Cloud: 1007. | PPT:
light rain | PPT in last
24 hrs: | | Reptile Hibernacu puried concrete or rock ock crevices or inactive Does the site cont describe details in Ta Bat Hibernacula F | (e.g. foundations
animal burrows
ain potentia
ble 1). | s, bridge abutme
i)
I reptile hibei | nts or culverts with | h cracks/entry points,
res? ☐ Yes ☐ N | exposed Unknown o (if yes, | | Does the site cont
describe details in Ta | | l bat hiberna | cula features | ? ☐ Yes ☐ No (if | Unknown
yes, | | Table 1: Potential | | | | | | | JTM | Fea
 type | | o # Descri | ption | Species observed | | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |------------------------|-----------------|---------|-------------|--------------------------------------| | | | | | | | | Test? | | | | | 4 2 20 10 7 2 110 4 20 | 2,116= | | | | Species Observations List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | 7 | 1 | , | | | AMCR | | | | / | Approx | imate a | ge of st | tandM | ature | | | | | | |--|--|---|---|------------------------|--------------------------------------|-----------------------|---------------------------|-------------------------------------|---| | | | | | | | . — ., | | 1150 | ~~ | | If yes, a | pproxim | ate # pr | resent or | % of s | es presen
stand
e only, in FOD | | | None See | | | Locatio | n in stan | a (no unc | agnout, in | mode alde | , only, in i OL | a d offing c | | | <u></u> | | If yes pro | vide chara | acterization | Yes I
on of numb
Small | oer pres | ent, height a | and DBH | of snags ar | nd indicate if | they | | Trees v | | ities pr | esent? [|] No [| ☐ Rare □ | Occasio | nal 🗌 Ab | undant | lone Seen | | | | Height
tree | ranges of | Range | e of Tree | Range
Height | of Cavity
s | Cavity siz
(approx.
diameter) | | | | | | | 1 E ^l relar | the man | | | | | | | | | | | | 1 | | 11 | | | | | | | | | | | | | | | | 70 | | į. | | | | | | | | | | | | | E P | | 79.11= | | | | Roost ? | | | (i.e. rapi | tor nests)? | ☐ Yes | □No | = | | | Present
If yes, the
species | JTM and | r ge stic
I describ | ck nests
be tree ty | /pe, he | | osition | in tree, si | | one Seen | | Present yes, the species Eviden | JTM and | rge stic
I describ
t
sturbar | ck nests
be tree ty | /pe, he | eight and p | osition | in tree, si | | one Seen | | Present yes, to species Evident If yes, o | JTM and present a | rge stic
I describ | ck nests oe tree ty | logging, i | roads, paths, | ATV use, | in tree, si | Yes 🗌 No | one Seen O Unknown | | Present from the species Evident If yes, of Seeps/ | JTM and s present ce of didescribe | rge stic
I describ | ck nests oe tree ty | /pe, he | eight and p | ATV use, | in tree, si | Yes 🗌 No | one Seen | | Present from the species Evident If yes, o | JTM and s present ce of didescribe | rge stic
I describ
sturbar | ck nests oe tree ty | /pe, he | roads, paths, | ATV use, | in tree, si | Yes 🗌 No | one Seen O Unknown | | Present from the species Evident If yes, of Seeps/ | JTM and s present ce of didescribe | rge stic
I describ
sturbar | ck nests oe tree ty | /pe, he | roads, paths, | ATV use, | in tree, si | Yes 🗌 No | one Seen O Unknown | | Present yes, I species Evident yes, I seeps/Speep/Speep/Speep | JTM and present the th | rge stic
I describ
sturbar
s prese | ck nests be tree ty | res Descri | roads, paths, | ATV use, | in tree, si | Yes No | ONE SEEN Unknown Unknown | | Present from the species Evident from
Seeps/Speep/Spee | JTM and present the th | sturbar | ck nests be tree ty nce? (i.e) nt? \(\backsquare | Yes Descri | roads, paths, No | ATV use, If y | in tree, si | Yes No | one Seen Unknown Unknown Unknown Unknown | | Present yes, I species Evident If yes, I seeps/Species | JTM and present the th | sturbar | ck nests be tree ty | Yes Descri | roads, paths, | ATV use, If yes, ool | trails) ves, Burrounding | Yes No | ONE SEEN Unknown Unknown | | Present from the species Evident from Seeps/Speep/Spee | JTM and present the th | sturbar | ck nests be tree ty nce? (i.e) nt? \(\backsquare | Yes Descri | roads, paths, No ription | ATV use, If yes, ool | trails) ves, Surrounding | Yes No | One Seen Onknown Unknown Unknown Onknown Presence of s | | Present from the species Evident from Seep/Sp | JTM and present the th | sturbar | ck nests be tree ty nce? (i.e) nt? \(\backsquare | Yes Descri | roads, paths, No ription | ATV use, If yes, ool | trails) ves, Surrounding | Yes No | One Seen Onknown Unknown Unknown Onknown Presence of s | | 101 | | 1 | |-------|-----|---| | " man | 17 | 1 | | 1.42 | 11/ |) | | 1 | 1 | 9 | | | | | Stantec Consulting Ltd. 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Feature 13 # Wildlife Habitat **Assessment** | | Fax: (519) | 836-2493 | na cle | I la sone p | Polygon (13) | T-line | | | | | |---|--|---|---------|----------------------------|---------------------|------------------------------------|--|--|--|--| | Project Number | 010646 | entervent (aut a | Proj | Project Name: Samsung | | | | | | | | Date / Time: | 4. 10 | macanyla să sa | Field | Field Personnel: | | | | | | | | Weather
Conditions: | Temp: | Wind: | Clou | ud:
1007 | PPT:
light rain | PPT in last
24 hrs:
Rain | | | | | | Reptile Hibernacula uried concrete or rock (e ock crevices or inactive a Does the site conta escribe details in Tabl Bat Hibernacula Fe Does the site conta | e.g. foundations
animal burrows
ain potential
le 1).
eatures i.e. k
ain potential | s, bridge abutme) I reptile hibe arst topograph | rnacula | rerts with crace features? | cks/entry points, e | xposed (if yes, Unknown Unknown | | | | | | escribe details in Tabl | VI-12 | | | | | yes, | | | | | | able 1: Potential b | VI-12 | ture Phot | | identified
Description | | Species | | | | | | escribe details in Tabl
able 1: Potential b | oat/reptile h | ture Phot | | | | Species observed usin | | | | | | able 1: Potential b | oat/reptile h | ture Phot | | | | Species observed using | | | | | List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, OP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |----------------------|--------------|-------|------------------------------|-------| | i.e. AMRO/VO
RTHA | Gr. Squirrel | | | 1 | | | | | | | | | | | | | | | | ge of stan | • | | | | | |--|--|--|--------------------------|--|--|---------------------------------------|-----------------------| | If yes, a | pproxim | nate # prese | ent or % | of stand | nt Yes N
D2-6 only etc) | O None Se | en
— | | If ves pro | vide char | sent? X Y
acterization of
Several | f number of | present, height
ags with so | and DBH of snags
ome loose bank | and indicate if | they | | | vith cav | | | | Occasional A | | | | ii proodi | | Height rang | | ange of Tree
3H | Range of Cavity
Heights | y Cavity siz
(approx.
diameter) | | | | 18 | 7-15m | Garley H. | 5-20 cm, | 2-4m | mediur | n | | | | | 1 | | 1 | | | | Presen | ce of la | | iests (i.e. | | ☐ Yes ☐ No | oize of post | | | Presen | ce of la | i rge stick r
d describe t | iests (i.e. | | ☐ Yes ☐ No
position in tree, | size of nest | Unknown | | Present f yes, t species Eviden | JTM and present | rge stick r
d describe t
t
isturbance | ests (i.e.
tree type, | height and | | | Unknown | | Present If yes, Uspecies Evident If yes, Consequent Seeps/ | ce of la
JTM and
present
ce of di
describe | rge stick r d describe f t isturbance s present? | ree type, (i.e loggi | height and parties, roads, paths, | ATV use, trails) | Yes No | Unknown | | Present f yes, to species Evident If yes, o | ce of la
JTM and
present
ce of di
describe | rge stick r
d describe t
t
isturbance | ree type, (i.e loggi | height and parts, roads, paths, | ATV use, trails) | Yes No | Unknown
Unknow | | Present If yes, Uspecies Evident If yes, Consequent Seeps/ | ce of la
JTM and
present
ce of di
describe | rge stick r d describe f t isturbance s present? | ree type, (i.e loggi | height and parties, roads, paths, | ATV use, trails) | Yes No | Unknown
Unknow | | Presen If yes, Uspecies Eviden If yes, Co Seeps/ Seep/Sp | ce of la
JTM and
present
ce of di
describe
spring
ring # | irge stick red describe to the sturbance spresent? | ree type, (i.e loggi | height and paths, ng, roads, paths, No escription | ATV use, trails) If yes, Surroundir | Yes ☐ No | Unknown
Unknow | | Presen If yes, Uspecies Eviden If yes, Co Seeps/ Seep/Sp | ce of la
JTM and
present
ce of di
describe
spring
ring # | rge stick red describe to the sturbance spresent? | ree type, (i.e loggi | height and paths, ng, roads,
paths, line No escription | ATV use, trails) If yes, Surroundir If yes, pol Presence | Yes No | Unknown Unknov Unknov | | ELC | | TE: 161010 | | 9 | | POLYG | ON: (3) | = 1/2 | First C | | | |--|---|------------------------------------|---|--|---------------------------|---|--------------------|---|----------------------|---|--| | COMMUNITY | SURVE | YOR(S): | SAN | | DATE. | Nov. | 1.10 | | UTME | | | | ESCRIPTION & ASSIFICATION | START: | | END | e, w | 1131 | J 10= | UTMZ: | | UTMN: | | | | LYGON DE | SCRIP | TION | A ::2 | | | | | MANAGE | | 100 D 1077 | | | SYSTEM | SUBS | STRATE | | OGRAPHIC
EATURE | HIS | STORY | PLAN | IT FORM | CON | IMUNITY | | | TERRESTRIAL
WETLAND
AQUATIC | ORGANIC MINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. | | VERAL SOIL RENT MIN. DIDIC BEDRK. VERALE SOIL TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND | | | CULTURAL SI | | PLANKTON
SUBMERGED
FLOATING-LVD.
GRAMINOID
FORB
LICHEN
BRYOPHYTE
DECIDUOUS | | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG | | | SITE | | B. BEDRK | CLI | | C | OVER | CON | IFEROUS
D | BARI | DOW | | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | 780 | n ngina
Na
Marana | RO BE | /AR
CKLAND
ACH / BAR
ND DUNE | OPE SHR | UB | | | SAV | PRAIRRE THICKET SAVANNAH WOODLAND FOREST PLANTATION | | | TAND DESC | RIPTIO | N: | | SPECIES | IN ORI | DER OF D | ECRE/ | ASING DO | MINAN | CE | | | LAYER | НТ | CVR | | MUCH GREA | TER TH | AN; > GRE | ATER T | HAN; = AB | OUT EQ | UAL TO) | | | CANOPY | 1-2 | 4 | ACE | SASA | | | | | +N | 111 | | | SUB-CANOPY | 3 | 4 | 1) | >3 | shaglo | ark = F | AGG | KAN | 7 Egg | | | | UNDERSTORE | Y 4-5 | 4 | 11 | > F | AGG | RAN | | | 16. 1 | | | | GRD. LAYER | 6-7 | | | 3 = 2 <ht 10="" :="" i<="" td=""><td></td><td></td><td>. </td><td>- 4-07-4</td><td>.05m 3</td><td>a HT<0.2 m</td></ht> | | | . | - 4-07-4 | .05m 3 | a HT<0.2 m | | | TAND COMPO | | | Ą | < 10 | A | 10 - 24 | A | 25 - 50 | BA: | > 50 | | | TANDING SNA | AGS: | | | < 10 | | 10 - 24 | | | | | | | | | | - 11 | | | | | 25 - 50 | 1_ | > 50 | | | | GS: | | N= | < 10 | R = RARE | 10 - 24 | CCASIO | 25 - 50 | ABUND | > 50 | | | BUNDANCE CO | GS: | PIONEE | - | < 10 | R = RARE | 10 - 24 | DCCASIC | 25 - 50 | ABUND | > 50 | | | BUNDANCE COL
COMM. AGE : | OGS:
DES: | PIONEE | - | < 10
NONE R | R = RARI | 10 - 24 | DCCASIO | 25 - 50
ONAL A = | ABUND | > 50
ANT | | | BUNDANCE COLOMM. AGE : | OGS:
DES: | PIONEE | R | < 10
NONE R | I | 10 - 24
0 = 0 | g = | 25 - 50
ONAL A = | ABUND
G= | > 50
ANT
OLD
GROWTH | | | BUNDANCE COLOMM. AGE : OIL ANALY! EXTURE: | OGS:
DES: | PIONEE | R DE | < 10
NONE R
YOUNG | OTTLES | 10 - 24
E O = C
MID-AGE | | 25 - 50
ONAL A = | L CONTRACTOR | > 50
ANT
OLD
GROWTH
(cm) | | | BUNDANCE COI
COMM. AGE :
COIL ANALY!
EXTURE:
ROISTURE: | OGS:
DES:
SIS: | | DEI | < 10
NONE · R
YOUNG | OTTLES | 10 - 24
E 0 = 0
MID-AGE
S/GLEY
CS: | | 25 - 50
ONAL A = | L CONTRACTOR | > 50
ANT
OLD
GROWTH | | | BUNDANCE COI
COMM. AGE :
SOIL ANALYS
TEXTURE:
MOISTURE:
HOMOGENEO! | OGS:
DES:
SIS: | ARIABLE | DEI
DE | < 10 NONE - R YOUNG TH TO MC | OTTLES | 10 - 24
E 0 = 0
MID-AGE
S/GLEY
CS: | | 25 - 50
ONAL A = | G= | > 50
ANT
OLD
GROWTH
(cm) | | | BUNDANCE COIL ANALYS TEXTURE: HOMOGENEO | DGS:
DES:
DES:
DES: | ARIABLE | DEI DEI | < 10 NONE - R YOUNG TH TO MC | OTTLES | 10 - 24
E 0 = 0
MID-AGE
S/GLEY
CS: | | 25 - 50
ONAL A = | L CONTRACTOR | > 50
ANT
OLD
GROWTH
(cm) | | | BUNDANCE COIL ANALYS FEXTURE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY | DGS:
DES:
DES:
SIS:
US / V/CLASS: | ARIABLE
SIFICAT
Fore | DEI DEI | < 10 NONE · R YOUNG PTH TO MC PTH OF OF PTH TO BE | OTTLES | MID-AGE MID-AGE S/GLEY CS: K: | | 25 - 50
ONAL A =
MATURE | G= | > 50
ANT
OLD
GROWTH
(cm)
(cm) | | | BUNDANCE COIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY COMMUNITY S | DGS: DES: DES: US / V/ CLASS: CLASS: BERIES: | ARIABLE
SIFICAT
Fore
Deci | DE DE DE CON: | < 10 NONE . R YOUNG PTH TO MC PTH OF OF PTH TO BE | OTTLES
RGANK
EDROC | MID-AGE MID-AGE S/GLEY CS: K: | | 25 - 50
ONAL A =
MATURE | G=
FO
FOI | > 50
ANT
OLD
GROWTH
(cm)
(cm) | | | DEADFALL / LC ABUNDANCE COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY COMMUNITY S ECOSITE: D- VEGETATION D-F Supposed | OGS: DES: DES: US / V/ CLASS: BERIES: | ARIABLE
SIFICAT
Fore
Deci | DEI DE DE ON: | <10 NONE . F YOUNG PTH TO MK PTH OF OF PTH TO BE US Fo DIE DE | DITLES
RGANIC
EDROC | 10-24 E 0=C MID-AGE MID-AGE S/GLEY CS: K: Foves | g = | 25 - 50 ONAL A = MATURE CODE: CODE: | G=
FO
FO
FO | > 50 ANT OLD GROWTH (cm) (cm) | | | SOIL ANALYS TEXTURE: MOISTURE: HOMOGENEOU COMMUNITY COMM | OGS: DES: DES: DES: DES: DES: DES: DES: DE | ARIABLE
SIFICAT
Fore
Deci | DEI DE DE ON: | <10 NONE . F YOUNG PTH TO MK PTH OF OF PTH TO BE US Fo DIE DE | DITLES
RGANIC
EDROC | 10-24 E 0=C MID-AGE MID-AGE S/GLEY CS: K: Foves | g = | 25 - 50 ONAL A = MATURE CODE: CODE: CODE: | G=
FO
FO
FO | > 50 ANT OLD GROWTH (cm) (cm) | | | SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY COMMUNITY S ECOSITE: D- VEGETATION D-F Sug | DGS: DES: DES: DES: DES: DES: DES: DES: DE | ARIABLE
SIFICAT
Fore
Deci | DEI DE DE ON: | <10 NONE . F YOUNG PTH TO MK PTH OF OF PTH TO BE US Fo DIE DE | DITLES
RGANIC
EDROC | 10-24 E 0=C MID-AGE MID-AGE S/GLEY CS: K: Foves | g = | 25 - 50 ONAL A = MATURE CODE: CODE: CODE: CODE: | G=
FO
FO
FO | > 50 ANT OLD GROWTH (cm) (cm) | | | BUNDANCE COIL ANALYSTEXTURE: WOISTURE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY COMMUNITY SECOSITE: D-VEGETATION D-F Sur INCLU | DGS: DES: DES: DES: DES: DES: DES: DES: DE | ARIABLE
Fore: Deci | DEI | <10 NONE . R YOUNG PTH TO MK PTH OF OF PTH TO BE US Fo DIE DE K- 3eech | DITLES
RGANIC
EDROC | 10-24 E 0=C MID-AGE MID-AGE S/GLEY CS: K: Foves | g = | 25 - 50 ONAL A = MATURE CODE: CODE: CODE: CODE: | G=
FO
FO
FO | > 50 ANT OLD GROWTH (cm) (cm) | | | SOIL ANALYS TEXTURE: MOISTURE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY COMMUNITY FECOSITE: VEGETATION D-F Sur INCLU INCLU RTH | OGS: DES: DES: DES: DES: DES: DES: DES: DE | ARIABLE
SIFICAT
Fore: Deci | DEE DE | <10 NONE . F YOUNG PTH TO MC PTH TO BE US Fo DIE DE K- Beech | DEC Val | 10-24 E 0=0 MID-AGE MID-AGE S/GLEY CS: K: Foves | g =
 +
 s+ | CODE: CODE: CODE: CODE: CODE: CODE: | FO FO FO | > 50 ANT OLD GROWTH (cm) (cm) | | | ELC | SITE: Transmission Line | |------------------|-------------------------| | | POLYGON: Feature 13 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | LAYER | | | | COLL. | SPECIES CODE | * | LA | YER | | COLL. | |--------------|-------|----------|----|---|----------------|---------------------|----------|----------|-----|-----|---------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL. | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | ACESASA | D | D | В | | | | | П | | | ->1 == | | FAGGRAN | 0 | A | A | | | | Н | | | | | | TILAMER | 0 | | | | | | | | | | | | Shaqbank | 0 | 0 | Α | | | | | H | | | | | QUERUBR | Q- | A | | | | | | | | | | | | | | | - | | | | - | | | | | | + | | | | | | | | | | | | | | 2311 | | | | | T | | | | | | | T | | | | | | F | 1 | =VI | | | | | = [A] | | | ā | | | | | | 100 | | | ====5) | | | | | | | | | | | h - | | | - | | | |
 | - | - | _ | _ | | | | - | - | | | | | H | | _ | - | | | | - | - | | | | | \vdash | | | | | | | - | - | | | | | + | \vdash | | | | | | | - | | | | | + | | | | | | | | | 11 | | | | | | | - | ½
== | | | | | 5 | | ==== | | | <u> </u> | | - | | | | | | | | | | T | | | | | | His late | | 15 | | | 建 | = EN = E2 #3/92 | | -10 | Ē | | CEN | | | | | | | | | | | | | | | | | ШJ: | | | #W0625 20 F | Gisc. (SGA) == 1 (S | | 392 | | | | | 8. 1 1 1 | | | | | | | - | _ | | | | | -(1X- | 1 | | | | | | 1 | | | | | | i i i i i i | | 120 | | | piya'n major s | | L | | | | | Page of | ELC | | | | 00.100. | YGON: (14) | | | | | | |--|--|--|---|--|---|---|---|--|---|--| | COMMUNITY | SURVE | YOR(S): | | | DATE: | | | | UTME: | | | DESCRIPTION & CLASSIFICATION | START | : | EN | <u> </u> | | UTMZ: | | UTMN | UTMN: | | | POLYGON DES | CRIP | TION | | | | | | • | tt u | | | SYSTEM | | STRATI | ETO | POGRAPHIC
FEATURE | HISTORY | PLANT | FORM | CC | MMUNITY | | | TERRESTRIAL WETLAND AQUATIC | ☐ PAR | ERAL SOIL
ENT MIN.
DIC BEDRK | LACUSTRINE RIVERINE BOTTOMLAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND | | CULTURAL | URAL SUBMERGED FLOATINGLYD. GRAMINOID FORB LICHEN BRYOPHYTE DECIDIOUS | | CAKE POND RIVER STREAM MARSH MARSH FEN BOG | | | | SITE | EN WATER
ALLOW WATER
RFICIAL DEP. | | TALUS CREVICE / CAVE ALVAR ROCKLAND BEACH / BAR SAND DUNE BLUFF | | COVER | MIXED | CONIFEROUS | | BARREN MEADOW PRAIRIE THICKET SAVANNAH WOODLAND
POREST PLANTATION | | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | | | | | OPEN SHRUB | | | | | | | STAND DESCR | IPTIO | N: | 741 | The state of s | | 18 m | | jey. | | | | LAYER | нт | CVR | (>> | | IN ORDER OF I | | | | | | | 1 CANOPY | 1-2 | 4 | | | Quercus > | | | 9= - | | | | SUB-CANOPY | 3 | 4 | | | Shagbark | | | | =1/1 | | | UNDEDSTOREY | 4-5 | 4 | 11 | | FAGGRAN | | | | | | | UNDERSTOREY | | | | | | | | 1 | | | | | | 1 | | | | | | | | | | GRD. LAYER | b-7
1 = >25 r | n 2 = 10< | | | n 4 = 1 <ht-2 5="</td" m=""><td></td><td></td><td></td><td>7 = HT<0.2 m</td></ht-2> | | | | 7 = HT<0.2 m | | | GRD. LAYER | b-7
1 = >25 r | n 2 = 10< | | | n 4 = 1 <ht√2 5="<br" m="">VR √25% 3= 25 < C1</ht√2> | | = 0.2 <ht
CVR > 60%</ht
 | | 7 = HT<0.2 m | | | GRD. LAYER OT CODES: | 1 = >25 r | n 2 = 10<
1= 0% | | | | | | | 7 = HT<0.2 m | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS | 1 = >25 r
0= NONE | n 2 = 10<
1 = 0% | | | | VR < 80% 4= 0 | | 1 | 7 = HT<0.2 m | | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS | 1 = >25 r
0= NONE
ITION: | n 2 = 10<
1 = 0% | CVR | 10% 2= 10 < C\ | VR , 25% 3= 25 < C1 | VR < 80% 4= 0 | CVR > 60% | 1 | = | | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG | 1 = >25 r
0= NONE
ITION:
LYSIS
SS: | n 2 = 10<
1 = 0% | A | < 10 < 10 < 10 < 10 | A 10 - 24
10 - 24 | VR < 50% 4= 0 | 5 - 50
5 - 50
5 - 50 | BA: | > 50
> 50
> 50
> 50 | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG | 1 = >25 r
0= NONE
ITION:
LYSIS
SS: | n 2 = 10<
1 = 0% | A | < 10 < 10 < 10 < 10 | A 10 - 24
10 - 24 | 2: 2: 0CCASIONAL | 5 - 50
5 - 50
5 - 50
A = A | 1 | > 50
> 50
> 50
> 50 | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE | 1 = >25 r
0= NONE
ITION:
LYSIS
SS: | n 2 = 10<
1 = 0% | A N= | < 10 < 10 < 10 < 10 | A 10 - 24
10 - 24 | 2: 2: 0CCASIONAL | 5 - 50
5 - 50
5 - 50 | BA: | > 50
> 50
> 50
> 50 | | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: | 1 × >25 r
0= NONE
ITION:
LYSIS
SS:
SS:
SS: | 2 = 10<
1 = 0% < | A N= | < 10
< 10
< 10
< 10
NONE - R | A 10 - 24 10 - 24 10 - 24 RARE 0 = 6 | 2: 2: 0CCASIONAL | 5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT | | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: | 1 × >25 r
0= NONE
ITION:
LYSIS
SS:
SS:
SS: | 2 = 10<
1 = 0% < | A N=R | < 10
< 10
< 10
< 10
NONE - R | A 10 - 24 10 - 24 10 - 24 RARE 0 = 6 | 2: 2: 0CCASIONAL | 5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSIS | 1 × >25 r
0= NONE
ITION:
LYSIS
SS:
SS:
SS: | 2 = 10<
1 = 0% < | A N= | < 10
< 10
< 10
< 10
NONE - R | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = (MID-AGE | 2: 2 2: DCCASIONAL | 5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT | | | 4 GRD. LAYER AT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSIS TEXTURE: MOISTURE: | 1 = >25 r
0 = NONE
ITION:
LYSIS
SS:
SS:
SS: | n 2 = 10<1 1 = 0% < | A N = R DEI | < 10 < 10 < 10 < 10 < 10 NONE - R YOUNG | A 10 - 24 10 - 24 10 - 24 RARE 0 = 6 MID-AGE TTLES / GLEY GANICS: | 2: 2 2: DCCASIONAL | 5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | | GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSIS TEXTURE: HOMOGENEOUS | ITION: | n 2 = 10 1 = 0% - 1 = 0% - PIONEE | A N=R DEI | < 10 < 10 < 10 < 10 < 10 NONE - R YOUNG | A 10 - 24 10 - 24 10 - 24 RARE 0 = 6 MID-AGE TTLES / GLEY GANICS: | 2: 2 2: DCCASIONAL | 5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITYCI | ITION: ITION: ILYSIS IS: IS: ITION: ILYSIS I | PIONEE | A DEI | < 10 < 10 < 10 < 10 < 10 NONE - R YOUNG | A 10 - 24 10 - 24 10 - 24 RARE 0 = 6 MID-AGE TTLES / GLEY GANICS: | 2: 22: 22: 22: 24: 24: 24: 24: 24: 24: 2 | 5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | | GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLASS HE COMMUNITY CLASS COMMUNITY CLASS HE CLASS ANA HE COMMUNITY CLASS CLA | 1 = >25 i | PIONEE | R DEI | < 10 < 10 < 10 < 10 < 10 NONE - R YOUNG PTH TO MO PTH OF ORC | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 25 | O 2: | 5 - 50
5 - 50
5 - 50
5 - 50
A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SEF | TIPON: | PIONEE | N= R DEE DEE DEE DEE DEE DEE DEE DEE DEE D | < 10 < 10 < 10 < 10 < 10 NONE R YOUNG PTH TO MO PTH OF ORG PTH TO BEE | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 TTLES / GLEY GANICS: DROCK: | CO CO CO CO CO CO CO CO | 5 - 50
5 - 50
5 - 50
5 - 50
A = A
FURE | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SEF ECOSITE: D-F | I T SE | PIONEE PIONEE PIONEE PIONEE PIONEE | DEI DEI DEI DEI MAPP | <10 < 10 < 10 < 10 < 10 NONE - R. YOUNG PTH TO MO'PTH OF ORE PTH TO BEE S Fove | A 10-24 10-24 10-24 10-24 10-24 MID-AGE TILES / GLEY GANICS: DROCK: | O 2: | 5 - 50
5 - 50
5 - 50
5 - 50
A = A
TURE
DE: F | BA: BBUND G= OD FOD | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SEF ECOSITE: D-F VEGETATION TYP D-F SUGO | I T T T T T T T T T T T T T T T T T T T | PIONEE PIONEE PIONEE PIONEE PIONEE | DEI DEI DEI DEI MAPP | <10 < 10 < 10 < 10 < 10 NONE - R. YOUNG PTH TO MO'PTH OF ORE PTH TO BEE S Fove | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 TTLES / GLEY GANICS: DROCK: | O 2: | 5 - 50
5 - 50
5 - 50
5 - 50
A = A
FURE
DE: T
DE: T | BA: BBUND G= OD FOD | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSIS TEXTURE: HOMOGENEOUS COMMUNITY CLA COMMUNITY SEF ECOSITE: D-F | ITION: IT | PIONEE PIONEE PIONEE PIONEE PIONEE | DEI DEI DEI DEI MAPP | <10 < 10 < 10 < 10 < 10 NONE - R. YOUNG PTH TO MO'PTH OF ORE PTH TO BEE S Fove | A 10-24 10-24 10-24 10-24 10-24 MID-AGE TILES / GLEY GANICS: DROCK: | CO CO CO CO CO CO CO CO | 5 - 50
5 - 50
5 - 50
5 - 50
A = A
TURE
DE: F | BA: BBUND G= OD FOD | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | No Access | ELC | SITE: T-Line | 1 3 | | | | | | |---------|---------------------|-----|--|--|--|--|--| | PLANT | POLYGON: Feature 13 | | | | | | | | SPECIES | DATE: | | | | | | | | LIST | SURVEYOR(S): | | | | | | | LAYERS: 1 = CANOPY > 10m 2 = SUB-CANOPY 3 = UNDERSTOREY 4 = GROUND (GRD.) LAYER ABUNDANCE CODES: R = RARE 0 = OCCASIONAL A = ABUNDANT D = DOMINANT | SPECIES CODE | | LAYER | | | HEREALT TO | CONTRACTOR SERVICES | LAYER | | | | Lagran | |--------------|-----|----------|---------|---------|------------|---------------------|---------|-----|---------|---------|--------| | | 1 | 2 | 3 | 4 | COLL. | SPECIES CODE | 1 | _ | _ | | COLL. | | FAGGRAN | R | | 0 | | | | | | | · | | | ACESASA | D | D | A | | | | | | | | | | QUERUBR | A | - | | | 2 _0 | | 1 | | | | | | QUEMACR | 0 | | | A. | MI - II - | | | - | | | | | Shagbark
| Α | Α | 111 | | | | | | | | | | OSTVIRE | | 0 | 8 | 1.0 | | | = | ı = | | | E | | FRAPENN | 0 | R | -4- | | | | | | | - | | | PINSTRO | R | (=34) | 3 = 3 | | | | | | | | | | | | | | | 2311 | | | | | | | | | | | | | F-F- | 4 | | | | | | | | | | | 4 | \perp | 4 | | | | | | | | | | | _ | 4 | | | | | | | | | | | | 4 | 4 | _ | | | | | | | | | | | - | \perp | 4 | | | | 4 | | | | | | | 4 | 10- | - | | | | | \perp | \perp | | | カラ 川井が建立 | | - | - | + | WIDEN : | ENCASE VOCE | | 4 | | 1 | 34 | | 1100 | | - | + | + | | | | | | 1 | | | | - | + | + | \perp | | voice this the text | 100 | | TI. | | | | | 100 | | - | - | | | _ | 1 | 1 | _ | | | 100 | | 9 | _ | | Art la P | | | | 1 | 1 | | | 4 G-E | | | | | | | COPY TO | | | - | | Page of | Stantec | 70-1 Sout
Guelph, C
N1G 4P5
Tel: (519) | onsulting Ltd.
hgate Drive
Intario, Canada
836-6050
) 836-2493 | e e e e e e e e e e e e e e e e e e e | Wildlife Asses | - | |------------------------|---|--|---------------------------------------|--------------------|--------------------------------| | Project Number | 161010646 | | Project Name | : Samsun | 7 | | Date / Time: | Jov. 4. 2010 |) | Field Personr | | J | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last
24 hrs:
Rayn | Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, describe details in Table 1). Unknown Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species
observed usi
feature | |-----|-----------------|---------|-------------|------------------------------------| | | under 15 in 11 | | | 2 2 | | | | | | | | | | | | | **Species Observations** describe details in Table 1). List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, OP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|------------|------------------------------|-------| | i.e. AMRO/VO | | ſ | 0 / | / | | / | | | | | | | | <i>V</i> . | • | on 13 | | | |---|--|---|--|-----------|--|--|--| | Approx | cimate a | ge of st | and/ | Natur | re | <u> </u> | | | If yes, a | approxim | ate # pr | esent or | % of s | stand | t Yes No | None Seen | | If yes pro
contain l | ovide chara
oose bark | acterization
Severa | d small | er pres | d snags | and DBH of snags a | nk. | | Trees | | | ranges of | ` | _ Rare | Occasional Ab | | | | | | Birth C | aneji. | | | P III | | | | | | 1 | | | | | Preser | | rge stic | k nests | | | ☐ Yes ☐ No | ize of nest. | | Preser If yes, species Evider | UTM and presented of di | rge stic
I descrik
t
sturbar | ek nests
be tree ty | pe, he | eight and p | Yes No position in tree, s | unknown
Yes □ No | | Preser If yes, species Evider If yes, | uce of la
UTM and
s presen
uce of di
describe | rge stic
I descrik
t
sturbar | ck nests
be tree ty | ogging, r | eight and p | ATV use, trails) | Yes No Unknew | | Preser If yes, species Evider If yes, | uce of la
UTM and
s present
ce of di
describe | rge stic
I descrik
t
sturbar | ck nests
be tree ty | ogging, r | eight and p | oosition in tree, s | Unknown Yes No Unknown Unknown | | Preser If yes, species Evider If yes, Seeps | uce of la
UTM and
s present
ce of di
describe | rge stic
i descrik
t
sturbar
s prese | ck nests
be tree ty | ogging, r | eight and produces and produces and paths, | ATV use, trails) | Unknown Yes No Unknown Unknown | | Preser If yes, species Evider If yes, Seeps Seep/Sp | nce of la UTM and s presen nce of di describe / springs | rge stic
i describ
t
sturbar
s preser | ck nests be tree ty nce? (i.e k | ogging, r | eight and produces and produces and paths, | ATV use, trails) | Unknown Yes No Unknown Unknown | | Preser If yes, species Evider If yes, Seeps Seep/Sp | nce of la UTM and s presen nce of di describe / springs | rge stic
describ
t
sturbar
preser | ck nests
be tree ty | ogging, r | eight and produces and produces and paths, | ATV use, trails) If yes, Surrounding If yes, ol Presence of | Unknown Yes No Unknown Unknown Habitat Unknown | | Preser If yes, species Evider If yes, Seeps Seep/Sp | ce of la UTM and s presen ce of di describe springs ring # | rge stic
describ
t
sturbar
preser | ck nests be tree ty nce? (i.e k nt? Y | ogging, r | roads, paths, No ription | ATV use, trails) If yes, Surrounding If yes, ol Presence of emergent/s | Unknown Yes No Unknown Habitat Unknown Of Presence | | FLC | SITE: | 161010 | h46 | | | | POLY | (GON: (13) | | | | | | | | | |--|--|--|--------------------------|--|-------------------------|---|-----------|--|---|---|--|----------|--|--|--|-----------------------------| | COMMUNITY | SURVE | YOR(S): | SAM | | DATE: | Nov. 4 | . 10 | | UTME | | | | | | | | | DESCRIPTION & CLASSIFICATION | START: | | END | E (s. distance) () | 510.0 | 7.00. | UTM | 2: (3) | UTMN | | | | | | | | | OLYGON DE | COID. | TION | | | , | | | etiteta. | | | | | | | | | | SYSTEM | | STRATE | | OGRAPHIC
ATURE | HIS | STORY | PLA | NT FORM | CO | MMUNITY | | | | | | | | TERRESTRIAL WETLAND AQUATIC | MINE PARE ACID | ☐ ORGANIC ## MINERAL SOIL ☐ PARENT MIN. ☐ ACIDIC BEDRK. ☐ BASIC BEDRK. ☐ CARB. BEDRK. | | MINERAL SOIL PARENT MIN. ACIDIC BEDRK. | | MINERAL SOIL PARENT MIN. ACIDIC BEDRK. | | MINERAL SOIL PARENT MIN. ACIDIC BEDRK. | | LACUSTRINE RIVERINE BOTTOMLAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND | | CULTURAL | | PLANKTON SUBMERGED FLOATING-LVD. GRAMINOID FORB LICHEN BRYOPHYTE DECIDUOUS | | E
ID
IR
EAM
ISH | | SITE | 1 | | | US
EVICE / CAVE
AR | c | OVER | co | NIFEROUS
XED | BAR
MEA
PRA | REN
DOW | | | | | | | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | | | | CKLAND
ACH / BAR
ID DUNE
FF | OPE SHR | JB . | 0 = | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | | | | | | | | | TAND DESC | RIPTIO | N: | E (| | | | 10000 | 10000000 | | | | | | | | | | LAYER | нт | CVR | (>> A | SPECIES
IUCH GREA | TER TH | AN; > GRE | ATER | ASING DOI
THAN; = AB | OUT EC | UAL TO) | | | | | | | | CANOPY | 1-2 | 4 | ACE | SASA >> | - Que | vicus : | ≥ F | AGGRAI | V | 19 15 | | | | | | | | SUB-CANOPY | 3 | 4 | 11 | | agb | 1. | | GRAN | | F (III) | | | | | | | | UNDERSTORE | 4-5 | 4 | h | > | FAC | GRAN | 1000 | | 4: | | | | | | | | | R CODES | | | | | | | le | 4= CVR > 607 | BA: | , , , , , , , , , , , , , , , , , , , | | | | | | | | IZE CLASS AN | ALYSIS | | A | < 10 | A | 10 - 24 | A | 25 - 50 | | > 50 | | | | | | | | | | | | < 10 | IJEST | 10 - 24 | P+11 | 25 - 50 | | > 50 | | | | | | | | | 38: | | | | | 10 21 | ₩ | 1 20 00 | - | | | | | | | | | TANDING SNA
EADFALL / LO | GS: | | | < 10 | | 10 - 24 | | 25 - 50 | | > 50 | | | | | | | | TANDING SNA
EADFALL / LO | GS: | E/LE | N = N | | = RARE | 10 - 24 | CCASI | 25 - 50
ONAL A = / | BUND | ANT | | | | | | | | TANDING SNA
EADFALL / LO
BUNDANCE COD | GS: | PIONEER | - 30 | | | 10 - 24 | CCASI | 25 - 50 | ABUNDA | | | | | | | | | TANDING SNA
EADFALL / LO
BUNDANCE COD
COMM. AGE : | GS:
ES: | PIONEER | | ONE .R | | 10 - 24
O = 0
MID-AGE | | 25 - 50
ONAL A = / | BUNDA
G= | OLD | | | | | | | | TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: COIL ANALYS EXTURE: | GS:
ES: | PIONEER | DEP | ONE .R | TTLES | 10 - 24
0 = 0
MID-AGE | g = | 25 - 50
ONAL A = / | L | OLD | | | | | | | | ETANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: SQIL ANALYS EXTURE: MOISTURE: | GS:
ES:
IS: | J | DEP
DEP | ONE · R | TTLES | 10 - 24
0 = 0
MID-AGE
/ GLEY
S: | | 25 - 50
ONAL A = / | L | OLD
GROWTH | | | | | | | | ETANDING SNA DEADFALL / LO BUNDANCE COD COMM, AGE: COLL ANALYS EXTURE: HOMOGENEOU COMMUNITY | GS:
ES:
IS:
S / VAI | RIABLE | DEP
DEP
DEP | ONE . R OUNG TH TO MO TH OF OR | TTLES | 10 - 24
0 = 0
MID-AGE
/ GLEY
S: | | 25 - 50
ONAL A = / | L | OLD
GROWTH
(cm) | | | | | | | | TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: OIL ANALYS EXTURE: OISTURE: OMOGENEOU OMMUNITY CI | GS:
ES:
IS:
S / VAI
CLASS: | RIABLE
IFICATION
Fores | DEP
DEP
DEP | ONE ROUNG TH TO MO TH OF OR TH TO BEI | TTLES
GANIC
DROCK | 10 - 24
0 = 0
MID-AGE
/ GLEY
S: | | 25 - 50
ONAL A = / | G=
Fo | OLD
GROWTH
(cm) | | | | | | | | TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: OIL
ANALYS EXTURE: IOISTURE: IOMOGENEOU COMMUNITY CI COMMUNITY SE | GS:
ES:
IS:
S / VAI
CLASS
ASS: | RIABLE
IFICATION
Fores
Decido | DEP
DEP
DEP | TH TO MO TH OF OR TH TO BEI | TTLES
GANIC
DROCK | 10 - 24
0 = 0
MID-AGE
/ GLEY
S: |] g = | 25 - 50 ONAL A = / | G=
FO
FOD | OLD
GROWTH
(cm)
(cm) | | | | | | | | STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY CO COMMUNITY CO COMMUNITY SE ECOSITE: D-F | GS:
ES:
IS:
IS:
S / VA
CLASS
ASS:
ERIES: | RIABLE
IFICATION
Fores
Decido | DEP
DEP
DEP
ON: | TH TO MO TH OF OR TH TO BEI | TTLES GANIC DROCK | 10-24
0=0
MID-AGE
/GLEY
5: |]g =
+ | 25 - 50 ONAL A = A MATURE CODE: CODE: CODE: | G=
FO
FOD: | OLD GROWTH (cm) (cm) | | | | | | | | STANDING SNA DEADFALL / LO LBUNDANCE COD COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY CI COMMUNITY CI COMMUNITY SI ECOSITE: D-F VEGETATION T | GS:
ES:
IS:
S / VAI
CLASS
ASS:
ERIES: S | RIABLE
IFICATION
Fores
Decido | DEP
DEP
DEP
ON: | TH TO MO TH OF OR TH TO BEI | TTLES GANIC DROCK | 10-24
0=0
MID-AGE
/GLEY
5: |]g =
+ | 25 - 50 ONAL A = A MATURE CODE: CODE: CODE: | G= FO FOD: | OLD
GROWTH
(cm)
(cm) | | | | | | | | STANDING SNA DEADFALL / LO ABUNDANCE COD COMM. AGE: SOIL ANALYS FEXTURE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY SEECOSITE: D-F | GS:
ES:
IS:
IS:
S / VAI
CLASS:
ASS:
ERIES: S
YPE:
Maple | RIABLE
IFICATION
Fores
Decido | DEP
DEP
DEP
ON: | TH TO MO TH OF OR TH TO BEI | TTLES GANIC DROCK | 10-24
0=0
MID-AGE
/GLEY
5: |]g =
+ | 25 - 50 ONAL A = A MATURE CODE: CODE: CODE: CODE: | G= FO FOD: | OLD GROWTH (cm) (cm) | | | | | | | | ELC | SITE: T-Line | 2000 | | | | | |------------------|---------------------|------|--|--|--|--| | | POLYGON: Feature 80 | | | | | | | PLANT
SPECIES | DATE: | | | | | | | LIST | SURVEYOR(S): | | | | | | | SPECIES CODE | LAYE | | YER | | COLL | SPECIES CODE | | LA | ren | | COLI | |---------------------|------|-------|------|------|-------------------|---------------------|----|----------|-----|----------|-------| | | 1 | 2 | 3 | 4 | | SPECIES CODE | 1 | 2 | 3 | 4 | C | | ACESASA | D | P | | | 12 | | 3 | | | | | | FAGGRAN | 0 | A | A | | | | | - 3 | | | П | | TILAMER | 0 | | | | | | | | | | | | Shagbark
QUERUBR | 0 | % | | | | 7 | | | | | | | QUERUBR | %A | I V | | | | | | | | | | • | | | | | | | _ | | | | | | | | | | | | | - | | | | | | | | | | | | | - | | | | | | | | | | | - | | - | | - | | | | | | | | | | | - | \dashv | | | | | | | | | | | \dashv | | | | | | | | _ | | | | | | | \dashv | | | | | | γ. | | | | | | _ | _ | | | | | | | | | | | - | | _ | | | | | | | _ | | | 4 | _ | | _ | _ | | | | | F-110 M-1 | | | | | | | | | | 77 | | | | | 12 | 1,18 | 3 | | | | 103 | | 0 | | | | | 23 | S.V | | | | | | 35 | | | | 35(044) (W.J W. | 24 | 19 | 411 | 1 | - Tribean in | N- ENWELL OF | 18 | 1994 | | | | | ALES AND ALES | | | | PFT. | RESERVE TO PARTY. | Bergmeller S., Sta. | 77 | =05 | | | | | | | | | 1965 | | | | | 411 | | | | 4000 | | | | di. | SMINE | | | | | | | | 29-50 63 | | Ex | 99 | | | | | | | | | | Wille. | | 13.71 | 727 | 12.5 | Eo-Piles | | | | | | 77110 | Page of | ELC | SITE: | | | | | 1 0011 | 30N: (9) | | | | |--|--|---|--|---
---|--|---|------------------------------|--|----------| | COMMUNITY | SURVE | OR(S): | | | DATE: | | | UTME: | | 1 | | DESCRIPTION & CLASSIFICATION | START: | intraces | END | Synthesis o | TESTICAL CONTRACTOR | UTMZ | (CANCE) | UTMN: | | | | OLYGON DES | CRIPT | TION | NUMBER | entertre en | TA SHIPPER AT THE | Carlos Cam | 0.000 | | A | | | SYSTEM | - | TRATE | | GRAPHIC
ATURE | HISTORY | PLA | NT FORM | COM | MUNITY | | | TERRESTRIAL WETLAND AQUATIC | ORGANIC MINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. CARB. BEDRK. | | MINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. CLIFF CL | | ERINE TTOMIAND TRACE LEY SLOPE SILELAND LL UPLAND FF | | NKTON
IMERGED
ATING-LVD.
MINOID
IB
IEN
OPHYTE
IDUOUS | MARSH
SWAMI
FEN
BOG | POND
RIVER
STREAM
MARSH
SWAMP
FEN | | | SITE | | | TALU | IS
VICE / CAVE | COVER | ON MIX | IIFEROUS
ED | BARR
MEAD
PRAIR | WOO | 6 6 | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | | | □ ROCI | KLAND
CH / BAR
D DUNE | OPEN SHRUB | No. | | THICK | KET
NNAH
DLAND
ST | | | STAND DESCR | RIPTIO | N: | | | ole III a san ox | | | 1 1 | errise in | | | LAYER | нт | CVR | (>> MI | SPECIES
UCH GREA | IN ORDER OF | DECRE/
REATER 1 | ASING DO | MINAN(| JAL TO) | | | 1 CANOPY | 1-2 | 4 | | | N | | 190 | 0 | | | | 2 SUB-CANOPY | 3 | 4 | // | alte | >> ULM, | AME | R | 8 | 116 | | | | - | | | | | | | | | - | | 3 UNDERSTOREY
4 GRD. LAYER
1T CODES: | 4-5
6-7 | 2 = 10 <h< th=""><th>CORS</th><th>= 2<ht<10 n<="" th=""><th>n 4=1<ht<2m 5="</th"><th>0.5<ht.1< th=""><th>m 6 = 0.2<ht< th=""><th>0.5 m 7</th><th>≠ HT<0.2 m</th><th>3 Acces</th></ht<></th></ht.1<></th></ht<2m></th></ht<10></th></h<> | CORS | = 2 <ht<10 n<="" th=""><th>n 4=1<ht<2m 5="</th"><th>0.5<ht.1< th=""><th>m 6 = 0.2<ht< th=""><th>0.5 m 7</th><th>≠ HT<0.2 m</th><th>3 Acces</th></ht<></th></ht.1<></th></ht<2m></th></ht<10> | n 4=1 <ht<2m 5="</th"><th>0.5<ht.1< th=""><th>m 6 = 0.2<ht< th=""><th>0.5 m 7</th><th>≠ HT<0.2 m</th><th>3 Acces</th></ht<></th></ht.1<></th></ht<2m> | 0.5 <ht.1< th=""><th>m 6 = 0.2<ht< th=""><th>0.5 m 7</th><th>≠ HT<0.2 m</th><th>3 Acces</th></ht<></th></ht.1<> | m 6 = 0.2 <ht< th=""><th>0.5 m 7</th><th>≠ HT<0.2 m</th><th>3 Acces</th></ht<> | 0.5 m 7 | ≠ HT<0.2 m | 3 Acces | | 4 GRD. LAYER | 6-7
1=>25 m
0= NONE | 2 = 10 <h< td=""><td>17.25 m 3</td><td>= 2<ht<10 n<="" td=""><td>n 4 = 1<ht√2 5="<br" m="">VR √25% 3= 25 < C</ht√2></td><td>0.5<ht; 1<br="">VR < 80%</ht;></td><td>m 8 = 0.2<ht
4= CVR > 60%</ht
</td><td>0.5 m 7 ·</td><td>■ HT<0.2 m</td><td>15</td></ht<10></td></h<> | 17.25 m 3 | = 2 <ht<10 n<="" td=""><td>n 4 = 1<ht√2 5="<br" m="">VR √25% 3= 25 < C</ht√2></td><td>0.5<ht; 1<br="">VR < 80%</ht;></td><td>m 8 = 0.2<ht
4= CVR > 60%</ht
</td><td>0.5 m 7 ·</td><td>■ HT<0.2 m</td><td>15</td></ht<10> | n 4 = 1 <ht√2 5="<br" m="">VR √25% 3= 25 < C</ht√2> | 0.5 <ht; 1<br="">VR < 80%</ht;> | m 8 = 0.2 <ht
4= CVR > 60%</ht
 | 0.5 m 7 · | ■ HT<0.2 m | 15 | | 4 GRD. LAYER
HT CODES:
CVR CODES | 1 = >25 m
0= NONE | 1 2 = 10 <h
1 = 0% <</h
 | 17.25 m 3 | = 2 <ht<10 n<="" td=""><td>n 4=1<ht√2 5="<br" m="">VR √25% 3=25 < C</ht√2></td><td>VR : 80%</td><td>m 8 = 0.2<ht
4= CVR > 609</ht
</td><td>1</td><td>= HT<0.2 m
> 50</td><td>Acces</td></ht<10> | n 4=1 <ht√2 5="<br" m="">VR √25% 3=25 < C</ht√2> | VR : 80% | m 8 = 0.2 <ht
4= CVR > 609</ht
 | 1 | = HT<0.2 m
> 50 | Acces | | GRD. LAYER HT CODES: CVR CODES STAND COMPOS | 1=>25 m
0= NONE
SITION: | 1 2 = 10 <h
1 = 0% <</h
 | 17-25 m 3
CVR < 10% | = 2 <ht<10 n<br="">2= 10 < C</ht<10> | VR , 25% 3= 25 < C | VR - 80% | 4= CVR > 609 | 1 | | Acces | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS AND STANDING SNAM DEADFALL / LO | 1=>25 m
0= NONE
BITION:
ALYSIS:
GS:
GS: | 1 2 = 10 <h
1 = 0% <</h
 | 17,25 m 3
CVR \ 10% | = 2 <ht<10 10="" 10<="" 2="10" <="" c1="" i="" n="" th=""><th>A 10 - 24 10 - 24</th><th>VR < 60%</th><th>25 - 50
25 - 50
25 - 50</th><th>BA:</th><th>> 50
> 50
> 50
> 50</th><th>Acces</th></ht<10> | A 10 - 24 10 - 24 | VR < 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | Acces | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AN. STANDING SNA DEADFALL / LOCABUNDANCE CODE COMM. AGE: | 6-7
1=>25 n
0= NONE
SITION:
ALYSIS:
GS:
GS: | 1 2 = 10 <h
1 = 0% <</h
 | A N = NC | = 2 <ht<10 10="" 10<="" 2="10" <="" c1="" i="" n="" td=""><td>A 10 - 24 10 - 24</td><td>OCCASIO</td><td>25 - 50
25 - 50
25 - 50</td><td>BA:</td><td>> 50
> 50
> 50
> 50</td><td>Acces</td></ht<10> | A 10 - 24 10 - 24 | OCCASIO | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | Acces | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AN STANDING SNA DEADFALL / LOG ABUNDANCE CODE | 6-7
1=>25 n
0= NONE
SITION:
ALYSIS:
GS:
GS: | 2 = 10 <h
: 1= 0% <</h
 | 17.25 m 3 CVR < 10% | = 2 <ht<10 m<br="">5 2= 10 < C1
< 10
< 10
< NE : R</ht<10> | A 10 - 24 10 - 24 10 - 24 RARE 0 = | OCCASIO | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
NT | Acces | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AN. STANDING SNA DEADFALL / LO ABUNDANCE CODI COMM. AGE: SOIL ANALYS | 6-7
1=>25 n
0= NONE
SITION:
ALYSIS:
GS:
GS: | 2 = 10 <h
: 1= 0% <</h
 | 17.25 m 3 CVR < 10% | = 2 <ht<10 m<br="">5 2= 10 < C1
< 10
< 10
< NE : R</ht<10> | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = MID-AGE | OCCASIC | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
NT | Acces | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AN. STANDING SNA DEADFALL / LO ABUNDANCE CODI COMM. AGE: SOIL ANALYS TEXTURE: | 1 = >25 m
0 = NONE
SITION:
ALYSIS:
GS:
GS:
ES: | 2 = 10-H
1 = 0% < | A | = 2 <ht<10 10="" 2="10" <="" c1="" m="" one="" oung<="" r="" td="" ·=""><td>A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = MID-AGE</td><td>OCCASIC</td><td>25 - 50
25 - 50
25 - 50
NAL A = /</td><td>BA:</td><td>> 50
> 50
> 50
NT
DLD
GROWTH</td><td>Acces</td></ht<10> | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = MID-AGE | OCCASIC | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
NT
DLD
GROWTH | Acces | | A GRD. LAYER HT CODES: CVR CODES STAND COMPOS STANDING SNA DEADFALL / LO ABUNDANCE CODI COMM. AGE: SOIL ANALYS TEXTURE: MOISTURE: | 6-7 1=>25 n 0= NONE SITION: ALYSIS: GS: GS: SS: SS: SS: SS: SS: SS: SS: S | PIONEER | N = NC DEPT DEPT | = 2 <ht<10 m<="" td=""><td>A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = MID-AGE</td><td>OCCASIC</td><td>25 - 50
25 - 50
25 - 50
25 - 50
NAL A = /</td><td>BA:</td><td>> 50
> 50
> 50
> 50
NT
OLD
GROWTH</td><td>Acces</td></ht<10> | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = MID-AGE | OCCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | Acces | | A GRD. LAYER AT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNA DEADFALL / LOO ABUNDANCE CODI COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOUS COMMUNITYC | 1 = >25 m
0 = NONE
SITION:
ALYSIS:
GS:
GS:
ES:
S:
LASSI
ASS: | PIONEEF | A A N = NC R YO DEPT DEPT DEPT DEPT ON: | < 10 < 10 | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE | OCCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = / | BA: | > 50
>
50
> 50
NT
DLD
GROWTH
(cm) | Acces | | 4 GRD. LAYER AT CODES: CVR CODES STAND COMPOS SIZE CLASS AN. STANDING SNA DEADFALL / LO ABUNDANCE CODI COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU: COMMUNITY CL COMMUNITY CL COMMUNITY SE | I = >25 m on NONE SITION: ALYSIS: GS: GS: S: I = >25 m on NONE SITION: ALYSIS: ALYSI | PIONEER PIONEER PIONEER PIONEER Deci | A A N = NC R YOU DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT | < 10 < 10 | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = MID-AGE | OCCASIC | 25 - 50
25 - 50
25 - 50
NAL A = / | BA: ABUNDAA G G= SW SW | > 50
> 50
> 50
NT
DLD
GROWTH
(cm) | Acces | | A GRD. LAYER AT CODES: CVR CODES STAND COMPOS SIZE CLASS AN. STANDING SNA DEADFALL / LO ABUNDANCE CODI COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU: COMMUNITY CL COMMUNITY CL COMMUNITY SE | 1 = >25 m on NONE SITION: ALYSIS: GS: ES: ALYSIS: ALYS | PIONEER PIONEER PIONEER PIONEER Mino | DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT | < 10 < 10 < 10 < 10 ONE R OUNG H TO MO H OF OR H TO BEI | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE | g = | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | BA: ABUNDAA G G= SW SW | > 50
> 50
> 50
> 50
SROWTH
(cm)
(cm) | Acces | | A GRD. LAYER AT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAA DEADFALL / LOO ABUNDANCE CODI COMM. AGE: HOMOGENEOUS COMMUNITY CL COMMUNITY CL COMMUNITY SE ECOSITE: A VEGETATION T | SITION: ALYSIS: SS: SITION: ALYSIS: SS: SITION: ALYSIS: AS: AS: AS: AS: AS: AS: AS: | PIONEER PIONEER PIONEER PIONEER Mino | DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT | < 10 < 10 < 10 < 10 ONE R OUNG H TO MO H OF OR H TO BEI | A 10-24 10-24 10-24 RARE 0= MID-AGE OTTLES/GLEY GANICS: DROCK: | g = | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | BA: ABUNDAI G= SW SW SW | > 50
> 50
> 50
> 50
SROWTH
(cm)
(cm) | Acces | | LIST | SURVEYOR(S): | |---------|---------------------| | SPECIES | DATE: | | PLANT | POLYGON: Feature 13 | | ELC | SITE: T-Line | | SPECIES CODE | 廖 | LA | YER | WIT. | COLL. | COLL. SPECIES CODE | | LA | YER | | COL | |-------------------|----------|----------|-------|------|-------------|--------------------|----------|----------|----------|----------|-----| | | 1 | 2 | 3 | 4 | CUL | SPECIES CODE | 1 | 2 | 3 | 4 | ı | | FRAPENN | D | D | | | | | | | | | İ | | ILMAMER | | A | | | | | | | | | ŀ | | ACERUBR | R | | | | 182.0 | | | | | | H | | CC NOBA | | \vdash | | | | | 1 | 1 | | - | ŀ | | | \vdash | | 1 | | | | + | | | 1 | H | | CORSTOL | | | 0 | | | | +- | | - 55 | 1 | - | | COROTOL | - | | | | | | + | \vdash | - | 4 | L | | | - | - | - | | | | +- | | ė. | 2 | L | | | - | | | - | | | - | -1 | 9 | - | _ | | | - | | | | 9 | | - | | | | | | * | _ | | | _ | | | - | | _ | | _ | | | - | _ | | | | 11 11 11 11 11 | | | | | | | | | _ | 40 | | | | | 46. | | | | | | | THE ST | - | | | 6 | | | | | - | | | | To breit # | | | | | 4 11 1 | | | | | | | | | 82 | je. | 38 | | | a k | | | | | į | | W Z T Z W W | | Ł | | | | | 5 | | | | Ī | | | 1 | 15 | 1/2 | 15 | | | 13 | 12.0 | | .5 | | | | | 314 | 6.53÷ | | | | | 30 | 34 | | | | na horiza i culti | Ŧ | 15 | N.E | 1 | SERVICE CO. | Tribulation be | | 1011 | | | | | Teacher Health |) Ti | Z-L | 1,7,7 | -11 | White en P | Sall And (1.300) | | 100 | | 511 | _ | | | | | | | | | \vdash | -+ | \dashv | - | - | | | | 1 | 750g | 100 | CHANGE. | | | | | 1 | | | 27 / 12 / 12 | | | | | 2000 | | | - | + | \dashv | | | 57 VIII | | 1.14 | -571 | 1000 | | | | | - | - | _ | | DEVEL | 4 | E | | - | | | | | | | | Page of Project Location 120m Zone of Investigation Proposed Turbine Location (V3) Access Road Centre Line (V3) Proposed Collector Line (V2 Sept 30) ROW Installation Zone (V3) Substation Property Elexco Aquired Agreements (Oct 26) Government Lands UDI Lands Abandoned Railway * Transmission Line (OBM) Deer Wintering Area Provincially Significant Wetland Non-Provincially Significant Wetland Watercourse (OBM) Area of Natural and Scientific Interest (ANSI) Life Science, Provincially Significant Earth Science, Provincially Significant Earth Science, Regionally Significant GAW Nov. 4.10 ### Client/Project SAMSUNG C&T GRAND RENEWABLE ENERGY PARK #### Figure No. FIELD MAP 2 **TRANSMISSION LINE -MAPBOOK** | Stantec | 70-1 South | | | FEATURE 18 Wildlife Habitat Assessment Polygon (9) | | | | |------------------------|------------|-------|---------------|--|--------------------------------|--|--| | Project Number | ,1010646 | | Project Name | Samsung - | T-Line | | | | Date / Time: | . 4. 2010 | | Field Personn | el:
GAW | | | | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT: light rain | PPT in last
24 hrs:
Rain | | | Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? \square Yes \square No (if yes, describe details in Table 1). Table 1: Potential bat/reptile hibernacula features identified on site | UTM | a 9 | Feature
type | Photo # | Description | Species observed usi feature | |-----|-----|-----------------|---------|-------------|------------------------------| | | | | | | | | | | | | | 11 11 11 11 11 11 | | - > | | 121 3 | | | 9 | **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, OP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | | | /- | 1 | | | - | | - ^- | Woodlot # | (indi | cate on map | : Fea | ture 18 1 | Polygon 9) | | |--|-------------------------------------|---|----------------------------------|--
--|-------------------------------------| | Approxima | ite aç | ge of stand _ | Midag | 2 | | | | If yes, appro | oxima | ate # present | or % o | f stand <u>Ver</u> | nt X Yes No
y Rave (~1)
D2-6 only etc) from | | | If yes provide | chara | ent? X Yes
acterization of nu
Only small sno | mber pr | | and DBH of snags a
loos e bark. | nd indicate if | | Trees with | cavi | ties present | ° □ No | ☐ Rare ☐ | Occasional | oundant A | | and a second | | Height ranges tree | of Rai | nge of Tree
H | Range of Cavity
Heights | Cavity siz
(approx.
diameter) | | | | | | | THE RESERVE RE | | | | | | | | | | | Presence o | of lar | | i. e. r | | ☐ Yes ☐ No | ze of nest, | | Presence of the species presence of the species presence of the species presence of the species | of lar
l and
esent | ge stick nes
describe tree | t s (i.e. r
type, | height and | | ze of nest, | | Presence of the species presence of the species presence of the species sp | of lard and esent of discribe | ge stick nes
describe tree
sturbance? (| ts (i.e. r
type,
e loggine | neight and paths, | ATV use, trails) | Yes 🗌 No | | Presence of the species presence of the species presence of the species sp | of lard and esent of discribe | ge stick nes
describe tree
sturbance? (| ts (i.e. r
type,
e loggine | neight and | ATV use, trails) | Yes 🗌 No | | Presence of the species presence of the species presence of the species presence of the species | of lard and esent of discribe rings | describe treesturbance? (| ts (i.e. r
type,
e loggine | neight and paths, neight and paths, no scription | ATV use, trails) | Yes 🗌 No | | Presence of yes, UTM species presence of the p | of lard and esent of discribe rings | ge stick nes describe tree sturbance? (present? UTM | ts (i.e. r
type,
e loggine | neight and paths, no scription | ATV use, trails) If yes, Surrounding If yes, Ool Presence of | Yes No | | ELC | SITE: 16 | 51010 | 0676 | , | | | | ON: (9) | | | |--|---|---|--|--|-----------------------|---|----------------------------------|--|--|--| | COMMUNITY | SURVEY | | GAN | | DATE: | Nov. | 4.10 | | UTME: | 4 - | | ESCRIPTION & | START: | | END | | | | UTMZ: | | UTMN; | = | | OLYGON DES | CDIDI | ION | | | , | | | | | | | SYSTEM | | TRATI | | OGRAPHIC
EATURE | HIS | TORY | PLAN | IT FORM | CON | MUNITY | | TERRESTRIAL WETLAND AQUATIC | ORGA MINE PARE ACIDI BASIC | RAL SOIL
ENT MIN.
IC BEDRY | RIVE | USTRINE
ERINE.
ITOMLAND
IRACE
LEY SLOPE
ILELAND
LL UPLAND | Ø NATL | | FLOA
GRAI
FORI
LICH | MERGED
ATING-LVD.
MINOID
B | LAKE POND RIVER STRE MARS | R
AM
IH | | SITE | | B. BEDRK | . TAL | US
EVICE / CAVE | C | OVER | CON | IFEROUS | BARR
MEAL
PRAI | RIE | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | | o is A | □ ROO | CKLAND
ACH / BAR
ND DUNE | ☐ OPEI | UB | | | ☐ THICI
☐ SAVA
☐ WOO
☐ FORE
☐ PLAN | INNAH
DLAND
IST | | TAND DESCR | RIPTIO | N: | | The same All | 1_8,03 | LINETH | (4)8 | | RSUC | | | LAYER | нт | CVR | (>> 1 | SPECIES
NUCH GREA | IN ORU | DER OF DE | ECREA
ATER T | ASING DO
HAN; = AB | MINAN
OUT EQ | UAL TO) | | CANOPY | 1-2 | 4 | | PENN | 48 | BELLEVUE | E. | 1836V[1 | 497 | -31 3±4. | | SUB-CANOPY | 3 | 4 | 11 | | >> UL | MAM | ER | | | | | 300-07-101 | | <u> </u> | C- 00 | | | | \$50 m | | W. | - 1/2 | | UNDERSTOREY | 14-5 | 4 | LUDKS | STOL | | | | | | | | GRD. LAYER | 6-7 | | No A | CCESS
3 = 2 <ht 10="" :="" :<br="">0% 2= 10 < C</ht> | m 4 = 1< | 17∻2 m 5 = 0
3= 25 < CVi | .5 <ht.1
R < 60%</ht.1
 | m 6 = 0.2 <h1
4= CVR > 60</h1
 | √0.5 m 7
% | = HT<0.2 m | | | 6-7
1=>251
0= NONE | m 2=10
E 1=0% | No A | CCESS | m 4 = 1<⊦
VR → 25% | 17√2 m 5 = 0
3= 25 < CVÍ | ,3417,1
R < 60% | 4= CVK > 60 | -0.5 m 7 | | | GRD. LAYER T CODES: VR CODES | 6-7
1=>251
0= NONE | m 2 = 10
E 1= 0% | No A | CCESS | m 4=1<-
VR - 25% | 17 - 24 | .5-HT.1
R < 50% | m 8 = 0.2 <hr/> 4= CVR > 60
25 - 50 | • | = HT<0.2 m
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO | 6-7
1=>251
0= NONE
SITION: | m 2 = 10
E 1= 0% | No A | CCESS
3 = 2 <ht 10="<br" :="">0% 2= 10 < C</ht> | VR - 25% | 3= 25 < CVF | R < 80% | 4= CVK > 60 | • | > 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN | 6-7
1=>251
0= NONE
SITION: | m 2 = 10
E 1= 0% | No A | CCCSS
3 = 2×H7-1010
0% 2= 10 < C
< 10
< 10 | A A | 10 - 24
10 - 24
10 - 24 | 0 | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA | 6-7
1=>25 to NONE
SITION:
ALYSIS
GS: | m 2 = 10
E 1= 0% | No A
INT:25 m
INT:25 m | CCCSS
3 = 2×H7-1010
0% 2= 10 < C
< 10
< 10 | VR - 25% | 10 - 24
10 - 24
10 - 24 | R < 80% | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO TIZE CLASS AN TANDING SNA DEADFALL / LO BUNDANCE COD | 6-7
1=>25 to NONE
SITION:
ALYSIS
GS: | m 2 = 10
E 1= 0% | No A INT: 25
m CCVR \ 10 | CCCSS
3 = 2×H7-1010
0% 2= 10 < C
< 10
< 10 | A A | 10 - 24
10 - 24
10 - 24 | 0 | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50 | | GRO. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN GTANDING SNA DEADFALL / LO BUNDANCE COD | 6-7
1=>25 to NONE
SITION:
ALYSIS
GS: | m 2=10
E 1=0% | No A INT: 25 m CCVR \ 10 | CCCSS 3 = 2 <ht, -="" 10;="" 3="10" <="" <10="" c="" none="" r<="" td=""><td>A A</td><td>10 - 24
10 - 24
10 - 24
0 = 0</td><td>0</td><td>25 - 50
25 - 50
25 - 50
DNAL A =</td><td>BA:</td><td>> 50
> 50
> 50
> 50</td></ht,> | A A | 10 - 24
10 - 24
10 - 24
0 = 0 | 0 | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN GTANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: SOIL ANALYS | 6-7
1=>251
0= NONE
SITION:
ALYSIS
GS:
DES: | m 2=10
E 1=0% | No A ANTI-25 m CVR \ 10 | < 10 < 10 < 10 NONE - R YOUNG | A A | 10 - 24
10 - 24
10 - 24
0 = 0 | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES STAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: SOIL ANALYS SEXTURE: | 6-7
1=>251
0= NONE
SITION:
ALYSIS
GS:
DES: | m 2=10
E 1=0% | No A AHT, 25 m COVR \ 10 | <pre>ccess 3 = 2<ht, -="" 10="" 10;="" 2="10" <="" c="" f="" none="" pre="" y,="" young<=""></ht,></pre> | A A R = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | 0 | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50 | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: SOIL ANALYS TEXTURE: MOISTURE: | 6-7
1=>251
0= NONE
SITION:
ALYSIS
GS:
GS:
DES: | m 2=10
E 1=0% | No A AHT, 25 m COVR \ 10 N = N DEF | <pre></pre> | A A R = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50
NNT
OLD
GROWTH | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN GRADFALL / LO BUNDANCE COD COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU | 6-7
1=>251
0= NONE
SITION:
ALYSIS
GS:
GS:
DES: | m 2=10
E 1=0% | No A chtt, 25 m ccvR \ 10 N = N DEF DEF | <pre>ccess 3 = 2<ht, -="" 10="" 10;="" 2="10" <="" c="" f="" none="" pre="" y,="" young<=""></ht,></pre> | A A R = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
> 50
NNT
OLD
GROWTH | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOL COMMUNITY | 6-7 1=>251 0= NONE SITION: ALYSIS GS: GS: GS: GS: GS: GS: GS: GS: GS: GS | PIONE | No A AHT, 25 m COVR \ 10 A DEF DEF DEF TION: | <pre></pre> | A A R = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
DNAL A = | BA: | > 50
> 50
> 50
NAT
OLD
GROWTH
(cm) | | GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: GOIL ANALYS EXTURE: HOMOGENEOU COMMUNITY C | 6-7 1=>251 0= NONE SITION: ALYSIS GS: GS: GS: GS: LS: VA CLASS LASS: | PIONE | No A A CHT, 25 m COVR, 10 DEF DEF E DEF TION: | < 10 < 10 < 10 NONE - R YOUNG PTH TO MC TH TO BE | A A I = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
6/ GLEY
S:
K: | OCCASIO | 25 - 50
25 - 50
25 - 50
NAL A = | BA: G= | > 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | GRD. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA STA | GS: GS: GS: GS: CLASS LASS: ERIES: | PIONE PIONE PLONE PLONE PLONE PLONE PLONE PLONE | No A chtf.25 m ccvR.10 A DEF DEF E DEF TION: | < 10 < 10 < 10 < 10 NONE - R YOUNG PTH TO MC TH TO BE | A A I = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
DNAL A =
MATURE | BA: ABUNDA G= SW | > 50
> 50
> 50
> 50
NNT
OLD
GROWTH
(cm) | | GRO. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: HOMOGENEOU COMMUNITY C COMMUNITY S ECOSITE: AS | I = >25 0 = NONE SITION: ALYSIS GS: DES: LASS LASS: ERIES: | PIONE | No A chtf.25 m ccvR.10 A DEF DEF E DEF TION: | < 10 < 10 < 10 NONE - R YOUNG PTH TO MC TH TO BE | A A I = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
MID-AGE | OCCASIO | 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: ABUNDA G= SW | > 50
> 50
> 50
NT
OLD
GROWTH
(cm) | | GRO. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: HOMOGENEOL COMMUNITY COMMUNITY C COMMUNITY S ECOSITE: AS VEGETATION 1 | I = >25 1 = >25 0 = NONE SITION: ALYSIS GS: GS: GS: GS: LS: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | PIONE PIONE PIONE PIONE PIONE | No A A CHT. 25 m COVR. 10 DEF DEF DEF TION: AMD ADD TOWN: | < 10 < 10 < 10 < 10 NONE - R YOUNG PTH TO MC TH TO BE | A A I = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
6/ GLEY
CS: | OCCASIO | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | BA: G= SW SW | > 50
> 50
> 50
> 50
NNT
OLD
GROWTH
(cm) | | GRO. LAYER T CODES: VR CODES TAND COMPO SIZE CLASS AN STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: HOMOGENEOL COMMUNITY COMMUNITY C COMMUNITY S ECOSITE: AS VEGETATION 1 | I = >25 f o= NONE SITION: ALYSIS GS: GS: GS: GS: LASS: LASS: ERIES: MYPE: Sh | PIONE PIONE PIONE PIONE PIONE | No A A CHT. 25 m COVR. 10 DEF DEF DEF TION: AMD ADD TOWN: | < 10 < 10 < 10 NONE - R YOUNG PTH TO MC PTH TO BE | A A I = RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
6/ GLEY
CS: | OCCASIO | 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: G= SW SW | > 50
> 50
> 50
> 50
SROWTH (cm) | | ELC | SITE: Transmission Line | |------------------|-------------------------| | | POLYGON: Feature 18 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | John Committee | 100 | LA | ÆR. | | COLL. | A. Langue | | LA | YER | | COLL. | |----------------|----------|---------|-----|-------|-----------|---------------|------|-----------|------|-------|-------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | FRAPENN | D | D | | Tall. | // | | | | | | | | ULMAMER | | A | | | | | T | | | _ | | | ACERUBR | R | | = | | ====W | | | | | 40.00 | v Fe | | | | | | | | | | | | | | | | | - 12 | | | | | F | | | | | | CORSTOL | | | 0 | | | | | | | | | | | - | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | \vdash | | | - | | | | | | | | | | | 140 | | | | = | | | | - | | | | | ia
E | | | | | | | | | | | | R | | | | | | | | | | H | | | - | | 1 | | | | - | | _ | | 47 | | | | | - | | | | | | | | | | | | | | | | ļ | | | - | - | | | | | | | | restine | I DEMECE E ME | 1160 | Y | | | | | | | | | | | | u.y | ==
=11 | 1,19 | 1274 | | | | - | - | | | 24 LW - E | | A | - | | | | | registi | | | -70 | | 1150 | | | 4 | 1 | | | | ELC | SITE: | | | | | | POL | GON: (10) | | | |--
--|--|---|---|--|--|-------------------------------|--|---|---| | COMMUNITY | SURVE | YOR(S) | â . | | DATE: | | | | UTME | : | | DESCRIPTION &
CLASSIFICATION | START | | END | | | | UTM | 7 | UTMI | V: | | OLYGON DE | SCRIP | TION | | 10 mg | | | | 2.000 | Charles . | | | SYSTEM | SUB | STRAT | | OGRAPHIC
EATURE | HI | STORY | PLA | NT FORM | CC | MMUNITY | | TERRESTRIAL] WETLAND] AQUATIC | ☐ PAR | ERAL SOIL
ENT MIN.
DIC BEDRING
BEDRING | C. TAE | CUSTRINE ERINE, TTOMLAND RRACE LEY SLOPE BLELAND LL UPLAND | B NAT | | SU
FL
GR
D FO
LIC | ANKTON
BMERGED
DATING-LVD.
AMINOID
RB
HEN
YOPHYTE
CIDUOUS | □ MA | /ER
REAM
IRSH
/AMP
N | | SITE | ☐ CAR | B. BEDRK | . I TAL | US
EVICE / CAVE | C | OVER | | NIFEROUS | □ BA | RREN
ADOW | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | Today | Err. | □ RO | CKLAND
ACH / BAR
ND DUNE | ☐ OPE | IUB | | | SAY | | | TAND DESCR | HT | N:
CVR | (>> B | | | | | ASING DO | | | | CANOPY | 1-2 | 4 | ACES | ASA >> | FAGG | RAN > | > QU | ERUBR | > | HAMANK
CONTRACTOR | | | 3 | 4 | 11 | | - | RAN | | 15-05- | 40 | | | SUB-CANOPY | | | | | | | 0. | | | | | | 4-5 | 4 | FAG | GRAN | | | | | | | | UNDERSTOREY GRD. LAYER CODES: | 6-7 | n 2 = 10< | HT-25 m | | 4=1< | | | m 8 = 0.2 <ht
4= CVR > 60*</ht
 | | 7 = HT<0.2 m | | UNDERSTOREY GRD. LAYER CODES: R CODES TAND COMPOS | 6-7
1=>25 r
0= NONE | n 2=10<
= 1=0% | HT-25 m
< CVR < 10 | 3 = 2 <ht 10="" \="" m<br="">% 2= 10 < C\</ht> | 4 = 1<1-//r> /R < 25% | 3= 25 < CV | R : 60% | 4= CVR > 604 | BA: | | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS | 6-7
1=>25 r
0= NONE | n 2=10<
= 1=0% | HT-25 m | 3 = 2 <ht 10="" \="" m<br="">% 2= 10 < C\
< 10</ht> | 4=1< | 3= 25 < CV | | 4= CVR > 60° | 8 | > 50 | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA | 1 = >25 r
0= NONE
SITION:
ALYSIS | n 2=10<
= 1=0% | HT-25 m
< CVR < 10 | 3 = 2 <ht 10="" m<br="">% 2= 10 < CV
< 10</ht> | 4 = 1<1-//r> /R < 25% | 3= 25 < CV | R : 60% | 4= CVR > 60° 25 - 50 25 - 50 | BA: | > 50 | | UNDERSTOREY GRD. LAYER GODES R CODES AND COMPOS ZE CLASS ANA ANDING SNAC | 1 = >25 r
the NONE
SITION:
ALYSIS
35: | n 2=10<
= 1=0% | HT-25 m
< CVR < 10° | \$ = 2 <ht 10="" m<br="">% 2= 10 < C\
< 10
< 10
< 10</ht> | 4 = 1 <f></f> /R < 25% | 10 - 24
10 - 24
10 - 24 | R : 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | UNDERSTOREY GRD. LAYER F CODES: //R CODES TAND COMPOS ZE CLASS ANA TANDING SNAC EADFALL / LOC BUNDANCE CODE | 1 = >25 r
the NONE
SITION:
ALYSIS
35: | n 2=10<
= 1=0% | HT-25 m < CVR \ 10' | \$ = 2 <ht 10="" m<br="">% 2= 10 < C\
< 10
< 10
< 10</ht> | 4 = 1 <f></f> /R < 25% A | 10 - 24
10 - 24
10 - 24 | R : 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50
ANT | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNAC ANDING SNAC ANDING SNAC UNDANCE CODE DMM. AGE: | 1 = >25 r
0= NONE
SITION:
ALYSIS
3S:
SS: | n 2=10<
= 1=0% | HT-25 m < CVR \ 10' | 3 = 2 <ht 10="" m<br="">% 2= 10 < CV
< 10
< 10
< 10
ONE R:</ht> | 4 = 1 <f></f> /R < 25% A | 10 - 24
10 - 24
10 - 24
0 = 0 | R : 60% | 25 - 50
25 - 50
25 - 50
25 - 50
ONAL A = / | BA: | > 50
> 50
> 50
> 50
ANT | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNAC ANDING SNAC ADFALL / LOC UNDANCE CODE DMM. AGE: | 1 = >25 r
0= NONE
SITION:
ALYSIS
3S:
SS: | n 2=10<
= 1=0% | HT .25 m < CVR < 10 | 3 = 2 <ht 10="" m<br="">% 2= 10 < CV
< 10
< 10
< 10
ONE R:</ht> | A = 1<5% | 10 - 24
10 - 24
10 - 24
0 = 0 | R : 60% | 25 - 50
25 - 50
25 - 50
25 - 50
ONAL A = / | BA: | > 50
> 50
> 50
> 50
ANT | | GRD. LAYER GRD. LAYER CODES: R CODES AND COMPOS E CLASS ANA ANDING SNAC ADFALL / LOC JINDANCE CODE MM. AGE: KTURE: | 1 = >25 r
0= NONE
SITION:
ALYSIS
3S:
SS: | n 2=10<
= 1=0% | HT 25 m < CVR < 10 | \$ = 2 <ht.10 m<br="">% 2= 10 < C\
< 10
< 10
< 10
< 10
ONE R:</ht.10> | A = 1 <f></f> /R \ 25% A = RARE | 3= 25 < CV
10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R : 60% | 25 - 50
25 - 50
25 - 50
25 - 50
ONAL A = / | BA: | > 50
> 50
> 50
> 50
ANT | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNAC EADFALL / LOC UNDANCE CODE DMM. AGE: DIL ANALYSI XTURE: DISTURE: | L = 725 r o= NONE O= NONE SITION: ALYSIS SS: SS: | 2 = 10<
= 1= 0% | N = NO | \$ = 2 <ht. 10="" m<br="">% 2= 10 < CV
< 10
< 10
< 10
< 10
ONE -: R :
'OUNG</ht.> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R : 60% | 25 - 50
25 - 50
25 - 50
25 - 50
ONAL A = / | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNAC EADFALL / LOC UNDANCE CODE DMM. AGE: DIL ANALYSI EXTURE: DISTURE: DMMUNITYC | 1=>25 r
0= NONE
SITION:
ALYSIS
3S:
3S:
3S:
SS: | PIONEE | N=NOP | \$ = 2 <ht. 10="" m<br="">% 2= 10 < CV
< 10
< 10
< 10
< 10
ONE · R :
'OUNG</ht.> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 =
0
MID-AGE | R : 60% | 25 - 50
25 - 50
25 - 50
25 - 50
DNAL A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNAC ANDING SNAC UNDANCE CODE DIMM. AGE: DIL ANALYSI XTURE: DISTURE: DIMMUNITYC | 1=>25 r
0= NONE
SITION:
ALYSIS
3S:
3S:
SS: | PIONEE | N=NOP | \$ = 2 <ht. 10="" m<br="">% 2= 10 < CV
< 10
< 10
< 10
< 10
ONE · R :
'OUNG</ht.> | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R : 60% | 25 - 50
25 - 50
25 - 50
25 - 50
DNAL A = A | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | UNDERSTOREY GRD. LAYER GODES AND COMPOS ZE CLASS ANA ANDING SNAC A | 1=>25 r
0= NONE
SITION:
ALYSIS
GS:
GS:
SS:
SS:
RIES: | PIONEE PIONEE PIONEE PIONEE PIONEE PIONEE | DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT | \$ = 2 <hr/> HT (10 m) \$ 2 = 10 < CV \$ 10 \$ | A Z5% A Z5% A Z5% FRARE TILES GANICS DROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R : 60% | 25 - 50
25 - 50
25 - 50
DNAL A = A
MATURE | BA: R ABUND G= FO | > 50
> 50
> 50
> 50
ANT
OLD
(SROWTH
(cm) | | UNDERSTOREY GRD. LAYER CODES: R CODES AND COMPOS ZE CLASS ANA ANDING SNAC EADFALL / LOC UNDANCE CODE DMM. AGE: DIL ANALYSI XTURE: DISTURE: DMMUNITY CL DMMUNITY CL DMMUNITY SEI | 1=>25 r
0= NONE
SITION:
ALYSIS
GS:
GS:
SS:
SS:
RIES: | PIONEE PIONEE PIONEE PIONEE PIONEE PIONEE | DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT | \$ = 2 <hr/> HT (10 m) \$ 2 = 10 < CV \$ 10 \$ | A Z5% A Z5% A Z5% A Z5% TILES GANICS DROCK | 3= 25 < CV
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | R : 60% | 25 - 50
25 - 50
25 - 50
DNAL A = A
MATURE | BA: | > 50
> 50
> 50
> 50
ANT
OLD
(SROWTH
(cm) | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNACE BUNDANCE CODE OMM. AGE: OIL ANALYSI EXTURE: OMOGENEOUS OMMUNITY CL OMMUNITY CL OMMUNITY SEI COSITE: D-F | S:
S:
LASSI
ASS:
S:
S:
S:
S:
S:
S:
S:
S:
S: | PIONEE PIONEE PIONEE PIONEE ATTENDATION PIONEE PIONEE PIONEE | N=NN-N=NDEPT | \$ = 2 <hr/> HT (10 m) \$ 2 = 10 < CV \$ 10 \$ | A PROPERTY OF THE STANICS DROCK | 3= 25 < CV
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | R · 60% | 25 - 50 25 - 50 25 - 50 DNAL A = / | BA: R BBA: R BBUND BBUND FO | > 50
> 50
> 50
> 50
ANT
OLD
(SROWTH
(cm) | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNACE BUNDANCE CODE OMM. AGE: OIL ANALYSI EXTURE: OMOGENEOUS OMMUNITY CL OMMUNITY CL OMMUNITY SEI COSITE: D-F | S: LASSI ASS: FRIES: Suggestion The part of par | PIONEE PIONEE PIONEE PIONEE ATTENDATION PIONEE PIONEE PIONEE | N=NN-N=NDEPT | S = 2 <ht 10="" \="" m<="" p=""> % 2= 10 < CV < 10 < 10 < 10 < 10 < 10 OUNG TH TO MOT TH TO BEE S Fove Dec.</ht> | A PROPERTY OF THE STANICS DROCK | 3= 25 < CV
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | R · 60% | 25 - 50 25 - 50 25 - 50 DNAL A = / | BA: R BBA: R BBUND BBUND FO | > 50
> 50
> 50
> 50
ANT
OLD
(SROWTH
(cm) | | UNDERSTOREY UNDERS | S: S: LASSI ASS: FRIES: Sug | PIONEE PIONEE PIONEE PIONEE ATTENDATION PIONEE PIONEE PIONEE | N=NN-N=NDEPT | S = 2 <ht 10="" \="" m<="" p=""> % 2= 10 < CV < 10 < 10 < 10 < 10 < 10 OUNG TH TO MOT TH TO BEE S Fove Dec.</ht> | A PROPERTY OF THE STANICS DROCK | 3= 25 < CV
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | R · 60% | 25 - 50 25 - 50 25 - 50 DNAL A = / | BA: R BBA: R BBUND BBUND FO | > 50
> 50
> 50
> 50
ANT
OLD
(SROWTH
(cm) | | ELC | SITE: T-Line | |------------------|---------------------| | T. Wood St. | POLYGON: Feature 12 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | f. | | LA | YER | (8) | 10111111111111 | A = ABUNDANT D = | No. | | | 1111 | | |--------------|-----------|-----|-----|--------------|----------------|--|-------|----|----------|------|-------| | SPECIES CODE | 1 | 2 | 3 | P. 4 . (143) | COLL. | SPECIES CODE | 1 | 2 | YER
3 | 4 | COLL | | ACESASA | D | Α | A | | . / 2010-1011 | recorded the state of | + | 4 | 3 | • | | | FAGGRAN | A | A | A | | | | - | | | | | | QUERUBR | A | M | | | | | | -1 | | | | | FRAPENN | 0 | | | 1 | | | | | | | | | PRUSERO | 0 | | -0 | | | | | | | | | | TILAMER | 0 | 200 | -3 | | | | | | | | 454 | | | | | | | | | | 3 | | | | | | | | | + | | | | | | | | | - M | <u>_1</u> | | | | | | | | | | | | | | | + | (A) | - 1/2 | 3-1 | | | | -51 | | | | | | | | | | | | | + | | | | | | | + | | | | | | | | | | | | | | | | | | | + | | | | | | | 11 | | | | | | 1 | | | | | | | + | | | | + | | + | | | | | | | | | | | | | | | | Barchie 1904 | | T T | | + | Cavi | A DINESS OF THE STATE ST | - | | 0 | - | TX, E | | | | o e | | | | | | | 4 | + | | | | | + | + | + | | | Yag J | + | | | | | 244 | | + | + | -
 | | - | - | + | + | | | 1 | | | |-----|----------|--| | -29 | | | | | 1/3 | | | | S2729940 | | Stantec Consulting Ltd. 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Feature 19 # Wildlife Habitat **Assessment** | Project Number | 161010646 | and Bergin | Project Nan | ne:
Samsung | УП) <u>.</u> | |---|--|---|--|----------------------------|------------------------------------| | Date / Time: No | v.4.10 | | Field Perso | nnel: GAW | | | Weather | Temp: | Wind: | Cloud: | PPT: | PPT in last | | Conditions: | 10° | 2 | 100% | light rain | 24 hrs:
Rain | | Ooes the site contescribe details in Ta | ble 1). | | | | (if yes, | | escribe details in Ta Bat Hibernacula F Does the site contescribe details in Ta Table 1: Potential | ble 1). Features i.e. katain potential ble 1). bat/reptile hit | urst topography,
bat hibernac
pernacula fea | abandoned mi
ula features?
utures identifi | nes or caves Yes No (if) | (if yes, Unknown ves, | | escribe details in Ta Bat Hibernacula F Does the site confescribe details in Ta | ble 1).
Features i.e. ka
tain potential
ble 1). | urst topography,
bat hibernac
pernacula fea | abandoned mi
ula features?
utures identifi | nes or caves Yes No (if) | (if yes, | | escribe details in Ta
Bat Hibernacula F
Does the site confescribe details in Ta
Table 1: Potential | ble 1). ceatures i.e. katain potential ble 1). bat/reptile hit | urst topography,
bat hibernac
pernacula fea | abandoned mi
ula features?
utures identifi | nes or caves Yes No (if) | Unknown ves, Species observed usin | | escribe details in Ta
Bat Hibernacula F
Does the site confescribe details in Ta
Table 1: Potential | ble 1). ceatures i.e. katain potential ble 1). bat/reptile hit | urst topography,
bat hibernac
pernacula fea | abandoned mi
ula features?
utures identifi | nes or caves Yes No (if) | Unknown ves, Species observed usin | | escribe details in Ta Bat Hibernacula F Does the site contescribe details in Ta Table 1: Potential | ble 1). ceatures i.e. katain potential ble 1). bat/reptile hit | urst topography,
bat hibernac
pernacula fea | abandoned mi
ula features?
utures identifi | nes or caves Yes No (if) | Unknown ves, Species observed usin | | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO | / | / | 2 | , | | BLJA | age of s | tandM | ature | ničali" iar | l lear | | | | |---|---|--|---------------------------------|----------------|----------------|---------|---|-------------------------------------|--| | | approxin | nate # pi | resent or | % of s | stand | o obs | Yes No
served
y etc) from | edge. | | | Are sna
If yes pro | ags pre | sent? [] | ☑ Yes ☐
on of numb | No
per pres | ent, height a | nd DBi | H of snags an | d indicate if | they | | Trees v | | 4 | | غالطا | | 13.83 | sional Abu | | | | Wind Sur | | tree | ranges of | DBH | e of Tree | Heig | ge of Cavity
hts | Cavity siz
(approx.
diameter) | | | one see | en: | 15m | isi ali ip | 20 cr | Y THE STATE OF | ٦. | n | mediun | n. | | | | Pania 1 | | | | Q ETO | | | | | Presen | ce of la | _ | k nests | • | or nests)? | | | e of nest | | | Presen
If yes, l | ce of la | ı rge stic
d descrit | k nests | • | • | | s □ No
n in tree, siz | | unknown | | Presen If yes, Uspecies Eviden | JTM and present | arge stic
d describ
t
isturbar | k nests
be tree ty | pe, he | eight and p | ositio | | 1 | unknown | | Presen If yes, to species Eviden If yes, to Seeps/ | JTM and spresent ce of didescribe | irge stic
d describ
it
isturbar | ck nests
be tree ty | ogging, r | eight and p | OSITION | n in tree, siz | ∕es ☐ No | unknown | | Presen If yes, to species Eviden If yes, to Seeps/ | JTM and spresent ce of didescribe | arge stic
d describ
t
isturbar | ck nests
be tree ty | ogging, r | oads, paths, A | OSITION | n in tree, siz | ∕es ☐ No | Unknown
Unknown | | Presen If yes, the species Eviden If yes, the species Seeps/ | JTM and spresent ce of didescribe | irge stic
d describ
it
isturbar | ck nests
be tree ty | ogging, r | oads, paths, A | OSITION | n in tree, siz | ∕es ☐ No | Unknown
Unknown | | Presen If yes, Uspecies Eviden If yes, Co Seeps/ Seep/Species | JTM and spresent described spring # | irge stic
d describ
it
isturbar | ck nests be tree ty nce? (i.e.) | ogging, r | oads, paths, A | OSITION | yes, Surrounding | ∕es ☐ No | Unknown
Unknown | | Presen If yes, Uspecies Eviden If yes, Co Seeps/ Seep/Species | JTM and spresent described spring # | isturbar UTM Present | ck nests be tree ty nce? (i.e.) | ogging, r | oads, paths, A | ATV use | yes, Surrounding | Yes No | Unknown
Unknown | | Presen If yes, Uspecies Eviden If yes, Co Seeps/ Seep/Spi | ce of dispersions and the series of dispersions # | isturbar UTM Present | ck nests be tree ty nce? (i.e.) | ogging, r | oads, paths, A | ATV use | yes, Surrounding Presence of emergent/su | Yes No | Unknown Unknown Unknown Unknown Presence of sh | | ELC | SITE: | | | | POLYGON: (8 | , | | |---|--
--|--|--|--|---|---| | COMMUNITY DESCRIPTION & | SURVE | YOR(S): | | DATE: | | UTME: | | | CLASSIFICATION | START | MALT. | END | P Hall | UTMZ: | UTMN: | | | OLYGON DES | CRIP | TION | | | 10 - 12
10 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - | | | | SYSTEM | SUB | STRATE | TOPOGRAPHIC
FEATURE | HISTORY | PLANT FOR | COM | MUNITY | | TERRESTRIAL WETLAND AQUATIC | ☐ PARI | ERAL SOIL
ENT MIN.
DIC BEDRK. | LACUSTRINE RIVERINE. BOTTOMLAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND | CULTURAL | PLANKTON SUBMERGED FLOATING-LVD GRAMINOID FORB LICHEN BRYOPHYTE | LAKE POND RIVER STREA | AM
H | | SITE | | B. BEDRK. | CLIFF TALUS CREVICE / CAVE | COVER | DECIDUOUS CONIFEROUS MIXED | BOG BARRE | ow | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | TAL. | | ALVAR ROCKLAND BEACH / BAR SAND DUNE BLUFF | OPEN SHRUB | 1 | THICK SAVAN WOOD FORES | ET
NAH
DLAND
ST | | | | 22.5 | | INCED | | | | | STAND DESCR | IPTIO
HT | N: | | | DECREASING D | | | | 1 CANOPY | 1-2 | 4 | Acer Que | ercus | 1 Cartage | 15 | | | 2 SUB-CANOPY | 3 | 4 | H 51081 - ma | | | -01114 | | | | | | | | | | | | 3 UNDERSTOREY | 4-5 | 4 | | | | | | | 4 GRD. LAYER | | n 2 = 10 <h< th=""><th>T.25 m 3 = 2<ht<10 m<="" th=""><th></th><th></th><th></th><th>HT<0.2 m</th></ht<10></th></h<> | T.25 m 3 = 2 <ht<10 m<="" th=""><th></th><th></th><th></th><th>HT<0.2 m</th></ht<10> | | | | HT<0.2 m | | GRD. LAYER HT CODES: CVR CODES | 1 = >25 r
0= NONE | n 2 = 10 <hf
= 1= 0% < 0</hf
 | T: 25 m 3 = 2 <ht<10 m<br="">CVR < 10% 2= 10 < C\</ht<10> | | | | HT<0.2 m | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS | 1 = >25 r
0= NONE | n 2 = 10 <h
= 1= 0% < (</h
 | | | √R - 60% 4± CVR > 6 | 0% | HT<0.2 m | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA | 1 =>25 r
0= NONE
ITION: | n 2 = 10 <h
= 1= 0% < (</h
 | CVR . 10% 2= 10 < CV | /R < 25% 3= 25 < C\ | VR - 60% 4= CVR > 6 | 0% | | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG | 1 = >25 r
0= NONE
ITION:
LYSIS
SS: | n 2 = 10 <h
= 1= 0% < (</h
 | A < 10 < 10 < 10 < 10 < 10 | A 10 - 24
10 - 24 | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | 4 GRD. LAYER HT CODES: EVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG | 1 = >25 r
0= NONE
ITION:
LYSIS
SS: | n 2 = 10 <h
= 1= 0% < (</h
 | A < 10 | A 10 - 24
10 - 24
10 - 24
RARE 0 = 0 | 25 - 50
25 - 50
25 - 50
25 -
50
25 - 50 | BA: | > 50
> 50
> 50 | | 4 GRD. LAYER HT CODES: EVEN CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC BUNDANCE CODE | 1 = >25 r
0= NONE
ITION:
LYSIS
SS: | n 2 = 10 <h
= 1= 0% < (</h
 | A < 10 | A 10 - 24
10 - 24 | 25 - 50
25 - 50
25 - 50 | BA: ABUNDAN | > 50
> 50
> 50 | | 4 GRD. LAYER AT CODES: EVEN CODES BETAND COMPOS BIZE CLASS ANA BETANDING SNAG BEADFALL / LOG BUNDANCE CODE COMM. AGE: | 1 = >25 r
0= NONE
ITION:
LYSIS
GS:
GS:
SS: | n 2 = 10 <h
E 1= 0% < 0</h
 | A < 10 | A 10 - 24
10 - 24
10 - 24
RARE 0 = 0 | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50 | BA: ABUNDAN | > 50
> 50
> 50
TT | | 4 GRD. LAYER AT CODES: EVEN CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSI: | 1 = >25 r
0= NONE
ITION:
LYSIS
GS:
GS:
SS: | n 2 = 10 <h
E 1= 0% < 0</h
 | A < 10 | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50 | BA: ABUNDAN | > 50
> 50
> 50
TT | | 4 GRD. LAYER AT CODES: EVEN CODES BETAND COMPOS BIZE CLASS ANA BETANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSI: EXTURE: | 1 = >25 r
0= NONE
ITION:
LYSIS
GS:
GS:
SS: | n 2 = 10 <h
E 1= 0% < 0</h
 | A < 10 < 10 < 10 < 10 N = NONE · R YOUNG | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE | 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 MATURE | BA: ABUNDAN GI | > 50
> 50
> 50
TT
LD
ROWTH | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYS! TEXTURE: MOISTURE: | 1 = >25 r
0 = NONE
ITION:
ILYSIS
GS:
GS:
SS: | 2 = 10 <he (<="" 1="0%" <="" =="" td=""><td> A < 10 1</td><td>A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TTLES / GLEY GANICS:</td><td>25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 MATURE</td><td>BA: ABUNDAN GI</td><td>> 50
> 50
> 50
TT
LD
ROWTH</td></he> | A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TTLES / GLEY GANICS: | 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 MATURE | BA: ABUNDAN GI | > 50
> 50
> 50
TT
LD
ROWTH | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI: TEXTURE: HOMOGENEOUS COMMUNITYCI | I = >25 r
0= NONE
ITION:
ILYSIS
IS:
IS:
ILYSIS
ILYSIS | PIONEER | A < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1 | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TTLES / GLEY GANICS: | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
26 - 50
27 - 50
28 - 50
29 - 50 | BA: ABUNDAN G G= | > 50
> 50
> 50
TT
LD
ROWTH | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CL | 1 = 25 in one none ittion: itt | PIONEER | A < 10 < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO MODE TO BE T | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TTLES / GLEY GANICS: | 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 26 - 50 27 - 50 28 - 50 29 - 50 20 - 60% | BA: BA: ABUNDAN G: G: G: FO | > 50
> 50
> 50
TT
LD
ROWTH | | GRD. LAYER IT CODES: EVEN CODES STAND COMPOS STANDING SNAG SNAG SNAG SNAG SNAG SNAG SNAG SNAG | TIPON: | PIONEER PIONEER PIONEER PONEER Decic | A < 10 < 10 < 10 < 10 < 10 N = NONE · R YOUNG DEPTH TO MO DEPTH OF ORG DEPTH TO BEE ON: | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TILES / GLEY GANICS: DROCK: | 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 26 - 50 27 - 50 28 - 50 29 - 50 20 - 5 | BA: BA: BA: BA: BBUNDAN GG GF FOD | > 50
> 50
> 50
TT
LD
ROWTH
(cm) | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CL/ | TIPON: | PIONEER PIONEER PIONEER PONEER Decic | A < 10 < 10 < 10 < 10 < 10 N = NONE · R YOUNG DEPTH TO MO DEPTH OF ORG DEPTH TO BEE ON: | A 10 - 24 10 - 24 10 - 24 10 - 24 MID-AGE TILES / GLEY GANICS: DROCK: | O 25 - 50
25 - 50 | BA: BA: ABUNDAN G: G: G: FO | > 50
> 50
> 50
TT
LD
ROWTH
(cm) | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: SOIL ANALYSI: TEXTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEI ECOSITE: D-F | 1 -7 VAI | PIONEER PIONEER PIONEER PIONEER POPE | A < 10 < 10 < 10 < 10 < 10 N = NONE · R YOUNG DEPTH TO MO DEPTH OF ORG DEPTH TO BEE ON: | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE TILES / GLEY GANICS: DROCK: | 0 25 - 50 | BA: BA: BA: BA: BBUNDAN GG GF FOD | > 50
> 50
> 50
> 50
TT
LD
ROWTH
(cm) | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAG DEADFALL / LOG ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CL COMMUNITY SEI ECOSITE: D-F | 1 1=251 0= NONE ITION: | PIONEER PIONEER PIONEER PIONEER POPE | A < 10 < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO MO DEPTH OF ORD DEPTH TO BET ON: A QUESTO Maple Des | A 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE TILES / GLEY GANICS: DROCK: | 0 25 - 50 | BA: BA: BA: BA: BA: BBA: BBA: BBA: BBA: | > 50
> 50
> 50
> 50
TT
LD
ROWTH
(cm) | | ELC | SITE: T-Line | |---------|---------------------| | PLANT | POLYGON: Feature 19 | | SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | 11 | LA | | | COLL. | SPECIES CODE | 1 | LA | YER | | 1 | |--|---------|-----|--------------|-----|----------|--------------|---|----|------------|----------|---| | | 1 2 3 4 | | SPECIES CODE | 1 | 2 3 | | 4 | | | | | | ACESASA | A | | J | | | | | | | | | | FAGGRAN | R | | | | | | | | - | | l | | OVERUBR | A | J | | (6) | | | | | 1 | | ł | | FRAPENN | 0 | | 11 | | | | | | | | ŀ | | shagbark | R | | | | | | | | | | ŀ | | | | | ::(| | | | | | | | H | | | - , j | | -: | | | | | | | Œ. | - | | —————————————————————————————————————— | | | | | | | | | | | - | | LONDIOI | | | | 0 | | | | | | | _ | | | | | | | | | | | | | _ | | | | | i=ş | | | | | | | | - | | | | | | 9 | <u> </u> | | | | | | - | | | | | | | | | | | 1 | | | | | | | | | | | | | | S. | | | | | | | | | | | 14 | 1 | 1 | | | | | | | | | | | | | 7 | _ | | | | | | | | | | + | | | - | | | | | | | | | | | | 1 | _ | | | | T | | | | × · | | | 1 | + | _ | | | Y. | | | | | | | + | 1 | \dashv | _ | | | | | | | | | | + | \uparrow | + | | | | 5 | Ž | | K- | 68/4 | - AN | | | 7 | | _ | | | | 3 | ч | | | | | + | | + | - | | | | | 1 | | | | | + | + | + | | | | | 1 | 7 | 1 | | | + | + | + | + | - | | | < 4 | 201 | | | | | + | + | | + | | | No. of the | + | + | | + | | | + | + | + | + | - | | ELC | SITE: 1 | 61010 | 064 | 6 | | | | ON: (7) | | | | | | | | | | | |--|---|--|---------------------------------|---
--|---|-------------------------------------|---|---|---|--|---|--------------|--|---|--|--|--| | COMMUNITY | | OR(S): | | | DATE: | Nov. | 4.10 | 3 | UTME: | | | | | | | | | | | ESCRIPTION & | START: | | END | | | 4 | UTMZ: | | UTMN: | | | | | | | | | | | OLYGON DES | CRIPT | TON | | 723554 | | | , | | | | | | | | | | | | | SYSTEM | SUBS | TRATE | | OGRAPHIC
EATURE | HIS | TORY | PLAN | TFORM | COI | MUNITY | | | | | | | | | | TERRESTRIAL
WETLAND
AQUATIC | MINE PARE | MINERAL SOIL PARENT MIN. ACIDIC BEDRK. | | MINERAL SOIL DE PARENT MIN. | | ORGANIC MINERAL SOIL PARENT MIN. ACIDIC BEDRK. | | MINERAL SOIL | | MINERAL SOIL PARENT MIN. ACIDIC BEDRK | | USTRINE
ERINE
TOMLAND
RRACE
LEY SLOPE
ILELAND
LL UPLAND | No Passal Ne | | PLANICTON SUBMERGED FLOATING-LVD. GRAMINOID FORB LICHEN BRYOPHYTE | | LAKE POND RIVER STREAM MARSH SWAMP FEN | | | SITE | 1 | BEDRK. | | US
EVICE / CAVE | C | OVER | CON | DUOUS
FEROUS
D | BOG
BAR
MEA | REN
DOW | | | | | | | | | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | | | D BE | CKLAND
ACH / BAR
ND DUNE | OPEI | UB | | | SAV | KET
ANNAH
ODLAND | | | | | | | | | | IAND DESCI | RIPTIO | N:
CVR | (>> 1 | SPECIES
WUCH GREA | IN ORD | DER OF D | ECRE/ | SING DO | MINAN
OUT EC | ICE
QUAL TO) | | | | | | | | | | CANOPY | 1-2 | | | RUBR | Ace | | abar | | PE | . 1 | | | | | | | | | | SUB-CANOPY | 3 | 4 | | | 6 3 | | West and | | | | | | | | | | | | | 300-041101 | | | | - T.T. | | 1 11 | X | | E10. | | | | | | | | | | | UNDERSTORE | 4-5 | 4 | | | | | | | | | | | | | | | | | | UNDERSTORES
GRD. LAYER
CODES: | 1 7 | 4 | HT. 25 m
CVR \ 10 | 3 = 2 <ht ,="" 10="" r<br="">0% 2= 10 < C</ht> | n 4 = 1< | 17∈2 m 5 = (
3= 25 < CV |).5 <ht;1
R < 60%</ht;1
 | n 6 = 0.2 <h1
4= CVR > 50°</h1
 | . 0,5 m : | / = HT<0.2 m | | | | | | | | | | UNDERSTORES
GRD. LAYER
CODES:
FR CODES | 6-7
1 = >25 t
0= NONE | n 2 = 10 <h
E 1= 0% <</h
 | 17,25 m
: CVR \ 10 | 3 = 2 <ht, 10="" r<br="">3% 2= 10 < C</ht,> | n 4=1<)
VR : 25% | 17√2 m 8 = (
3= 25 < CV | R < 60% | 4= CVR > 60 | 0.5 m | | | | | | | | | | | UNDERSTORES GRD. LAYER CODES: R CODES AND COMPO | 6-7
1=>25
0= NONE | m 2 = 10 <h
E 1= 0% <</h
 | HT. 25 m
CVR \ 10 | 3 = 2 <ht 10="" \="" r<br="">0% 2= 10 < C
< 10</ht> | n 4=1<)
VR . 25% | ति 2 m 8 = (
3= 25 < CV
10 - 24 | 0.5 <ht.:1
R < 60%</ht.:1
 | 4= CVR > 60
25 - 50 | <u>. </u> | > 50 | | | | | | | | | | UNDERSTORES GRD. LAYER CODES: R CODES AND COMPO | 1 = >25 to none SITION: | m 2 = 10 <h
E 1= 0% <</h
 | CVR v 10 | < 10
< 10 | m 4 = 1<1
VR \ 25% | 10 - 24
10 - 24 | R < 60% | 25 - 50
25 - 50 | <u>. </u> | > 50 | | | | | | | | | | UNDERSTORE GRD. LAYER CODES: R CODES FAND COMPO ZE CLASS AN FANDING SNA EADFALL / LC | 1 = >25 to the North SITION: ALYSIS GS: GS: | m 2 = 10 <h
E 1= 0% <</h
 | A | < 10
< 10
< 10
< 10 | n 4 = 1 <f
VR \ 25%</f
 | 10 - 24
10 - 24
10 - 24 | R < 60% | 25 - 50
25 - 50
25 - 50 | <u>. </u> | > 50
> 50
> 50 | | | | | | | | | | UNDERSTORES GRD. LAYER CODES: R CODES FAND COMPO ZE CLASS AN FANDING SNA EADFALL / LC SUNDANCE COD | 1 = >25 to the North SITION: ALYSIS GS: GS: | m 2 = 10 <h
E 1= 0% <</h
 | A | < 10
< 10
< 10
< 10 | A A | 10 - 24
10 - 24
10 - 24 | 0 O | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | | | | | | | | | UNDERSTORE' GRD. LAYER I CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COL OMM. AGE: | L-7
1=>25
6= NONE
SITION:
ALYSIS
GS:
DGS: | 2 = 10 <>
E 1 = 0% < | A | < 10
< 10
< 10
< 10
NONE · R | A A | 10 - 24
10 - 24
10 - 24
0 = 0 | CCASIC | 25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
ANT | | | | | | | | | | UNDERSTORE GRD. LAYER CODES: R CODES FAND COMPO ZE CLASS AN FANDING SNA EADFALL / LC BUNDANCE COE OMM. AGE: OIL ANALYS EXTURE: | L-7
1=>25
6= NONE
SITION:
ALYSIS
GS:
DGS: | 2 = 10 <>
E 1 = 0% < | A A NEW DEF | < 10 < 10 < 10 < 10 NONE • R YOUNG | A A RARE | 10 - 24
10 - 24
10 - 24
10 - 24
0 = 0 | 0 O | 25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
ANT | | | | | | | | | | UNDERSTORE GRD. LAYER T CODES: VR CODES TAND COMPO IZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COL COMM. AGE: COLL ANALYS EXTURE: MOISTURE: | L-7 1=>251 6= NONE SITION: ALYSIS GS: GS: ES: | m 2=10 1=0% 1=0% 1=0% | A A DEF | < 10
< 10
< 10
< 10
NONE · R | A A E = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT | | | | | | | | | | UNDERSTORE GRD. LAYER T CODES: YR CODES: YR CODES TAND COMPO IZE CLASS AN ITANDING SNA DEADFALL / LC BUNDANCE COC COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY | L-7 1=>251 6= NONE SITION: ALYSIS GS: GS: GS: GS: GS: CLASS | PIONEE | A DEF | < 10 < 10 < 10 < 10 NONE · R YOUNG TH TO MC | A A E = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | | | | | | | | | UNDERSTORE GRD. LAYER CODES: R CODES FAND COMPO ZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COC OMM. AGE: OIL ANALYS EXTURE: IOISTURE: OMOGENEOU COMMUNITY COMMU | L-7 1=>251 6=NONE SITION: ALYSIS ALYSIS GS: GS: GS: CS: LASS: LASS: | PIONEE | DEF DEF | < 10 < 10 < 10 < 10 NONE - R YOUNG TH TO MC | A A E = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
NAL A = | BA: ABUND G= | > 50
> 50
> 50
ANT
OLD
GROWTH
(cn | | | | | | | | | | UNDERSTORE GRD. LAYER F CODES: R CODES TAND COMPO ZE CLASS AN TANDING SNA EADFALL / LC BUNDANCE COL OMM. AGE: OIL ANALYS EXTURE: IOMOGENEOU COMMUNITY COMMUNITY COMMUNITY COMMUNITY COMMUNITY SINCE | L-7 1=>25 6= NOME SITION: ALYSIS GS: GS: GS: GS: LS: LASS LASS: ERIES: | PIONEE PIONEE PIONEE PIONEE PEONEE PEONEE | DEF
DEF
DEF
DEF
DEF | < 10 < 10 < 10 < 10 NONE - R YOUNG PTH TO MC PTH TO BE | A A REPORTED TO THE STATE OF TH | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | g = | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A =
MATURE | BA: G= FO | > 50
> 50
> 50
ANT
OLD
GROWTH
(cn | | | | | | | | | | UNDERSTORE GRD. LAYER T CODES: YR CODES: YR CODES TAND COMPO IZE CLASS AN ITANDING SNA DEADFALL / LC BUNDANCE COC COMM. AGE: COMM. AGE: COMMUNITY COMMUNITY COMMUNITY SECOSITE: D- | 1=>251
0= NONI
SITION:
SITION:
SITION:
GS:
GS:
GS:
DES:
VA
CLASS
LASS:
ERIES: | PIONEE PIONEE PIONEE ARIABLE Deci | DEF DEF TION: | <10 <10 <10 <10 NONE · R YOUNG PTH TO MC PTH TO BE FUS F | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
S/GLEY | g = | 25 - 50
25 - 50
25 - 50
NAL A =
MATURE | BA: G= FO FO | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cn | | | | | | | | | | UNDERSTORE GRD. LAYER T CODES: YR CODES: YR CODES TAND COMPO IZE CLASS AN ITANDING SNA DEADFALL / LC BUNDANCE COC COMM. AGE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY COMMUNITY SECOSITE: D- YEGETATION STATEMENT OF THE COMMUNITY SECOSITE: D- YEGETATION SECOSITE SECOSITE: D- YEGETATION OF THE COMMUNITY SECOSITE S | I = 255 60 NOME SITION: GS: GS: GS: GS: CLASS LASS: ERIES: F SI TYPE: | PIONEE PIONEE PIONEE ARIABLE Deci | DEF DEF TION: | <10 <10 <10
<10 NONE · R YOUNG PTH TO MC PTH TO BE FUS F | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
S/GLEY | g = | 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: G= FO FO | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cn | | | | | | | | | | UNDERSTORE GRD. LAYER T CODES: YR CODES: YR CODES TAND COMPO IZE CLASS AN ITANDING SNA DEADFALL / LC BUNDANCE COC COMM. AGE: COMM. AGE: COMMUNITY COMMUNITY COMMUNITY SECOSITE: D- | L-7 1=>25 6= NOME SITION: ALYSIS GS: GS: GS: CLASS LASS: ERIES: TYPE: VA SION | PIONEE PIONEE PIONEE ARIABLE Deci | DEF DEF TION: | <10 <10 <10 <10 NONE · R YOUNG PTH TO MC PTH TO BE FUS F | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
S/GLEY | g = | 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: CODE: | BA: G= FO FO | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cn | | | | | | | | | | ELC | SITE: Transmission Line | |------------------|-------------------------| | - a 44.1.X | POLYGON: Feature 21 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | LAYER | | сош. | SPECIES CODE | LAYER | | | COLL. | | | | |--------------|-------|----------|------|--------------|-----------|-----------------|-----------|-------|---|---|-------| | | 1 | 2 | 3 | 4 | | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | QUERUBR | A | | | | | | | | | | | | ACESASA | A | | with | | | | | | | | | | FRAPENN | A | | | | | | - | 140 | | | | | PINSTRO | R | | | d | E | | 1 | | | | | | FAGGRAN | 0 | 0 | 0 | | | | T | | | | | | 5hag bank | A | | | | | | | | | | | | | | | | 7.0 | | | + | | | | | | | | | | | | | | | | | | | 2 | | - | | | | | + | | | | | | | | | | | | | T | | | | | | | | | | | | | | = | | | | | | | | _ | | | | 1 | | _ | | | | | | \vdash | | | 10= === | | - | | - | | | | | | | | 1 | | | + | - | 1 | | - | | | | - | | | | | | | 75 | | <u> </u> | | | | | | | | | | | | 1 | | | 7. | | | | | CENTRIB BEQU | | \vdash | - | | 0 0000 | LINEOPEN GIRAN | illo
b | | | | 1 112 | | | | - | - | | | | + | - | | | | | | 100 | Title o | | | 38.00- | Ace in the base | | | | | | | | | 16.9 | LUAT | | | | | - | | | | | (547) | | | | -34 | recent or | | | | 2 | | | Stantec Stantec Consulting Ltd. 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Feature 21 ## Wildlife Habitat Assessment Fax: (519) 836-2493 T-line Polygon (1) Project Name: **Project Number** 161010646 Samsung Field Personnel: Date / Time: GAW | Weather
Conditions: | remp: | 2 | 100 % | light rain | 24 hrs:
Rain | |--|-----------------------|-----------------------------|-----------------|---------------------------|-----------------| | Reptile Hibernacula | g. foundations | s, bridge abutment | | | | | ock crevices or inactive a | anımaı burrows |) | | | unknown | | Does the site conta
describe details in Tab | | reptile hibern | acula features | ? 🗌 Yes 🗌 No | o (if yes, | | Bat Hibernacula Fe | <u>eatures</u> i.e. k | arst topography, | abandoned mine | es or caves | Unknown | | Does the site conta
describe details in Tab | • | l bat hibernac | ula features? [| ☐ Yes ☐ No (if | yes, | | | | DATE OF THE PROPERTY OF THE | THE RESIDENCE | SAST LESS TO THE STATE OF | | Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |----------|-------------------|--------------------|--|--------------------------------------| | | 11 22 13 11 21 11 | Attinger in a con- | Station of the State Sta | 4 | | partir - | | | Time and section is beginned. | | | | | | | | **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, **DP** = distinctive parts, **FE** = feeding evidence, **CA** = carcass, **FY** = eggs, nest, **HO** = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|--|------------|------------------------------|-------| | i.e. AMRO/VO | Grey Squirrel | / | // | 1 | | / | | <i>y</i> . | | / | | | | | | | | | s = ================================== | | | | ## Woodlot # (indicate on map): Polygon ① Approximate age of stand Mature Are large (i.e. >40cmDBH and >25m tall) trees present Yes No None Seen. If yes, approximate # present or % of stand __ Location in stand (i.e throughout, in west side only, in FOD2-6 only etc..) _ Are snags present? X Yes No If yes provide characterization of number present, height and DBH of snags and indicate if they contain loose bark. Only small, barkless snags observed. Trees with cavities present? No Rare Occasional Abundant None Seen If present: Height ranges of Range of Tree Range of Cavity Cavity sizes DBH Heights (approx. tree diameter) Bat Mat Roost? None Seen None Seen Presence of large stick nests (i.e. raptor nests)? ☐ Yes ☐ No If yes, UTM and describe tree type, height and position in tree, size of nest, species present Evidence of disturbance? (i.e logging, roads, paths, ATV use, trails) Yes No None Secon If yes, describe ___ Seeps/ springs present? Yes No Unknown If ves. Seep/Spring # UTM Surrounding Habitat Description Unknown Vernal Pools Present? ☐ Yes ☐ No If yes, Location Depth of water Size of pool Presence of Presence of shrubs. (diameter) emergent/submergent logs at pond edge veg? Woodland Assessment- complete 1 assessment for each woodland Transmission Line (OBM) Deer Wintering Area Provincially Significant Wetland Non-Provincially Significant Wetland Watercourse (OBM) Area of Natural and Scientific Interest (ANSI) Life Science, Provincially Significant Earth Science, Provincially Significant Earth Science, Regionally Significant Nov. 4.10 - NOTES 1. Coordinate System: UTM NAD 83 Zone 17 (N). 2. Data Sources: Ontario Ministry of Natural Resources © Queens Printer Ontario, 2009; © Samsung, 2010. 3. Image Source: Grand River Conservation Authority © First Base Solutions, 2010 Imagery Date: Spring 2006; LIDAR IMAGERY SOURCE??? 4. Produced using the Version 3 site plan provided by Samsung issued on October 18, 2010 Client/Project SAMSUNG C&T GRAND RENEWABLE ENERGY PARK FIELD MAP 1 TRANSMISSION LINE -**MAPBOOK** | Stantec | 70-1 Sout
Guelph, C
N1G 4P5
Tel: (519) | onsulting Ltd.
hgate Drive
Ontario, Canada
836-6050
) 836-2493 | EN ALL PERSON | Asses | Habitat
sment | |------------------------|---|--|---------------|--------------------|--------------------------------| | Project Number | 161010646 | | Project Name | e: Samsung | | | Date / Time: Nov | 1.4.10 | | Field Person | nel: GAW | 47-140-7 | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last
24 hrs:
Rain | Does the site contain potential reptile hibernacula features? Yes No (if yes, Unknown describe details in Table 1). Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, Unknown describe details in Table 1). Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species observed using feature | |------------------|-----------------|----------------|--------------------------|--------------------------------| | | v Programme | _(;:16::31:6-1 | Experiment to aurorate a | | | n o file (asset) | 98 | | through partines suggest | | | | 140431 | | | | #### **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps |
Butterflies /
Dragonflies | Other | |--------------|--------------|-------|------------------------------|-------| | i.e. AMRO/VO | Gr. Squirvel | / | 1 | | | | | | | | | | 02' | Al. | | | | | | | | | | | | | | | | Appro | ximate a | ge of st | tand _mi | dage | | | | | | |---|--|---|-----------------------|---|---------------------------------------|----------------------------|-----------------------------|-------------------------------------|----------------------------------| | | | | | Ü | | • [7] \ | [N. | | | | If yes, | approxim | nate # pr | resent or | % of s | es present
stand
e only, in FOD | | One | observed | | | | | min onsw | | | والنوس | | | 71 | T | | lf yes pr | | acterizatio | on of numb | er pres | ent, height a
served , Bo | | | nd indicate if | f they | | Trees | | ities pre | esent? [|] No [| Rare 🗌 | Occasio | onal 🗌 Abi | undant No | me Seen | | | al gillar | Height i
tree | ranges of | Range
DBH | e of Tree | Range
Height | of Cavity
s | Cavity siz
(approx.
diameter) | | | traffe [| | Alamit au | مرجيك أعر | i lagi d | | f el lattiv | a III | A this extent | 10 | | | | | | | | | | ni an an | | | | | Í | | ł | | | | | | | | | | | | | | | LES III | | | | | 70.20 | | 111111111111111111111111111111111111111 | | | | | | | 100 | | | | | | | | | | | | Roost | | | | ar inii ili | Hall William | | Alana Alana | 2000 | | Prese ilf yes, | nce of la | rge stic
I describ | k nests | • | tor nests)?
eight and p | | | None
ze of nest | | | Prese ilf yes, | nce of la
UTM and | rge stic
I describ | k nests | • | • | | | | | | Preser
If yes,
specie | nce of la
UTM and
s present | rge stic
d describ
t | k nests
be tree ty | pe, he | eight and p | osition | in tree, siz | ze of nest | | | Preser
If yes,
specie | nce of la
UTM and
s present | rge stic
d describ
t
sturban | k nests
be tree ty | pe, he | • | osition | in tree, siz | ze of nest | | | Preser
If yes,
specie | nce of la
UTM and
s present | rge stic
d describ
t
sturban | k nests
be tree ty | pe, he | eight and p | osition | in tree, siz | ze of nest | | | Preser
If yes,
species
Evider
If yes, | nce of la UTM and s present | rge stic
describ
t
sturban | k nests
be tree ty | ogging, r | eight and p | ATV use, | in tree, siz | ze of nest | o Unknown | | Preser
If yes,
specie
Evider
If yes,
Seeps | nce of la UTM and s present nce of di describe | rge stic
describ
t
sturban | k nests
be tree ty | ogging, r | eight and p | ATV use, | in tree, siz | Yes No | o Unknown | | Preser
If yes,
specie
Evider
If yes,
Seeps | nce of la UTM and s present nce of di describe | rge stic
d describ
t
sturban
s preser | k nests
be tree ty | ogging, r | roads, paths, A | ATV use, | in tree, siz | Yes No | o Unknown | | Preser
If yes,
specie
Evider
If yes,
Seeps | nce of la UTM and s present nce of di describe | rge stic
d describ
t
sturban
s preser | k nests
be tree ty | ogging, r | roads, paths, A | ATV use, | in tree, siz | Yes No | o Unknown | | Preser
If yes,
specie
Evider
If yes,
Seeps | nce of la UTM and s present nce of di describe | rge stic
d describ
t
sturban
s preser | k nests
be tree ty | ogging, r | roads, paths, A | ATV use, | in tree, siz | Yes No | o Unknown | | Preser If yes, specie Evider If yes, Seeps Seep/Sp | nce of la UTM and s present nce of di describe / springs | rge stic
d describ
t
sturban
s preser | ce? (i.e k | ogging, r | roads, paths, A | ATV use, | in tree, siz | Yes No | Onknown | | Preser If yes, specie Evider If yes, Seeps Seep/Sp | nce of la UTM and s present nce of di describe / springs pring # | rge stic describ t sturban s preser UTM | ce? (i.e k | ogging, r | roads, paths, A | ATV use, If y | trails) trails) trails) | Yes No | Unknown
Unknown | | Preser If yes, specie Evider If yes, Seeps Seep/Sp | nce of la UTM and s present nce of di describe / springs | rge stic describ t sturban s preser UTM | ce? (i.e k | ogging, r | roads, paths, A | ATV use, If y If yes, ol | trails) ves, Surrounding | Yes No | Onknown | | Preser If yes, specie Evider If yes, Seeps Seep/Sp | nce of la UTM and s present nce of di describe / springs pring # | rge stic describ t sturban s preser UTM | ce? (i.e k | ogging, r | roads, paths, A | ATV use, If y If yes, ol | trails) | Yes No | Unknown Unknown Presence of sh | | Preser If yes, specie Evider If yes, Seeps Seep/Sp | nce of la UTM and s present nce of di describe / springs pring # | rge stic describ t sturban s preser UTM | ce? (i.e k | ogging, r | roads, paths, A | ATV use, If y If yes, ol | trails) ves, Surrounding | Yes No | Unknown Unknown Presence of sh | | Preser If yes, specie Evider If yes, Seep/Sp | nce of la UTM and s present nce of di describe / springs pring # | rge stic describ t sturban s preser UTM | ce? (i.e k | ogging, r | roads, paths, A | ATV use, If y If yes, ol | trails) ves, Surrounding | Yes No | Unknown Unknown Presence of sh | | Stantec | 70-1 Soutl
Guelph, O
N1G 4P5
Tel: (519) | onsulting Ltd.
hgate Drive
ontario, Canada
836-6050
836-2493 | | | Habitat
ssment | |------------------------|--|--|--------------|--------------------|------------------------| | Project Number | 161010646 | upediro unio | Project Nam | ne: Samsung | 002 | | Date / Time: | 1.4.10 | | Field Persor | nnel: | | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last
24 hrs: | | neptile Hibernacula Features i.e. features that would provide a route underground, including buried concrete or rock (e.g. foundations, bridge abutments or culverts with cracks/entry points, exposed rock crevices or inactive animal burrows) | | |--|--------| | Does the site contain potential reptile hibernacula features? \square Yes \square No (if yes, describe details in Table 1). | rknowr | | Bat Hibernacula Features i.e. karst topography, abandoned mines or caves | n | | Does the site contain potential bat hibernacula features? Yes No (if yes, describe details in Table 1) | | Table 1: Potential bat/reptile hibernacula features identified on site | UTM | - | Feature
type | Photo # | Description | Species
observed using
feature | |-------------|---|-----------------|---------------|--------------------------------|--------------------------------------| | gili Casi I | | A TENTON | R Chargest in | | | | 4 | | [0 ⁴ | | The separation of the Missen 2 | | | | | | | alia di Santa Inde | | Species Observations List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |--------------|---------------|-------|------------------------------|-------| | i.e. AMRO/VO | quey squirrel | / / | -/ | | | | | | | | | | - | | | | | | υι # (INα | icate 0 | n map) : | 10.14 | on 6 | - | | | | |--|--------------------------|------------------|--------------------|-----------------|----------------------------------|--------------|-------------------------|-------------------------------------|-----------------| | Approx | cimate a | ge of s | tand <u>//</u> | Pature | 1 = 1 = 1035 (N)
2 = 10 | | | | | | If yes, a | approxim | ate # p | resent o | r % of | es presenstand
e only, in FOI | | Yes No | None Se | en | | If yes pro | | acterizati | | | None Se
sent, height a | | H of snags an | d indicate i | f they | | Trees v | | ities pr | esent? [|] No [| ☐ Rare ☐ | Occas | sional 🗌 Abu | undant No | ne seen | | | h # m l == s' | Height
tree | ranges of | Rang
DBH | e of Tree | Rang
Heig | ge of Cavity
hts | Cavity siz
(approx.
diameter) | | | | hamada 💴 | | | 4 | | | | 10-3151 11 | | | | | descril | | | tor nests)?
eight and p | | n in tree, siz | e of nest | | | species
Eviden | present | | nce? (i.e l | ogging, ı | oads, paths, | ATV use | o, trails) | ∕es |) Unknown | | Evidence If yes, d | ce of dis | sturbar | | ogging, i | roads, paths, | | o, trails) \(\square\) | res No | | | Evidence If yes, d | ce of dis | sturbar | | ∕es □ | | | 14 | Unknou | | | Evidend
If yes, d | ce of dis | sturbar
prese | | ∕es □ | No | | yes, | Unknou | | | Evidence If yes, description Seeps/ Seep/Spr | ce of distensive springs | prese | nt? 🔲 \ | ∕es ☐
Desci | No | If | yes,
Surrounding | Unknow
Habitat | | | Evidence If yes, description Seeps/ Seep/Spr | ce of dis | prese | nt? 🔲 \ | ∕es ☐
Descri | No | If yes, | yes,
Surrounding | Unknov
Habitat
Onknown | | | Evidence If yes, description Seeps/ Seep/Spr | ce of distensive springs | prese | nt? | ∕es ☐
Descri | No
ription | If yes, | yes, Surrounding | Unknov
Habitat
Onknown | Presence of shi | | Evidence If yes, do Seeps/Seep/Spr | ce of distensive springs | prese | nt? | ∕es ☐
Descri | No
ription | If yes, | yes, Surrounding | Unknov
Habitat
Onknown | Presence of s | | ELC | SITE: | | | | POLYGON: | | | |
--|---|--|--|--|--|---|--|--| | COMMUNITY | SURVE | YOR(S): | SPE NO. | DATE: | | UTME: | | | | DESCRIPTION & CLASSIFICATION | START | 100 Miles | END | | UTMZ. | UTMN: | | | | OLYGON DE | SCRIP | TION | | Dicerrit Hillow Wesses | La Annual | | | | | SYSTEM | SUB | STRATE | TOPOGRAPHIC FEATURE | HISTORY | PLANT FORM | COMMUNITY | | | | TERRESTRIAL | ORG | ANIC | LACUSTRINE RIVERINE | NATURAL | PLANKTON SUBMERGED | LAKE
POND | | | | ☐ WETLAND
☐ AQUATIC | PAR | ERAL SOIL
ENT MIN.
DIC BEDRK. | BOTTOMLAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND CLIFF | CULTURAL | FLOATING-LVD. GRAMINOID FORB LICHEN BRYOPHYTE | RIVER STREAM MARSH SWAMP FEN BOG | | | | SITE | ☐ CAR | B. BEDRK. | CREVICE / CAVE | COVER | CONIFEROUS | BARREN MEADOW PRAIRIE | | | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | 190 | | ☐ ROCKLAND ☐ BEACH / BAR ☐ SAND DUNE ☐ BLUFF | OPEN SHRUB TREED | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | | | | TAND DESCR | RIPTIO | N:
CVR | | | DECREASING DOI
EATER THAN; = ABO | | | | | 1 CANOPY | 1-2 | - | ACESASA > | | | | | | | | 3 | 4 | ACESASA | | | iv-resser | | | | SUB-CANOPY | | | 1100 1011 | | X I F | | | | | | | 4 | | | | | | | | UNDERSTOREY GRD. LAYER | 4-5 | 4 | 75 m 1 a 2cHT 10 m | Antald 2m Br | 0 Selit 1 m # a 0 2elit | .0.5 m 7 m HT<0.2 m | | | | UNDERSTOREY GRD. LAYER T CODES: CVR CODES | 4-5
6-7
1=>25 r
0= NONE | 1= 0% < 0 | | | 0.5 <ht.1 8="0.2<HT<br" m="">/R : 60% 4= CVR > 60%</ht.1> | | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS | 4-5
6-7
1=>25
0= NONE | n 2=10 <h1
E 1=0% < 0</h1
 | CVR \ 10% 2= 10 < CV | /R < 25% 3= 25 < C\ | /R : 60% 4= CVR > 60% | BA: | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOSIZE CLASS AN | 4-5
6-7
1=>25 r
6= NONE
SITION: | n 2=10 <h1
E 1=0% < 0</h1
 | EVR \ 10% 2=10 < CV | R < 25% 3= 25 < C\ | /R : 60% 4= CVR > 60% | BA: > 50 | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOSIZE CLASS AND | 4-5
6-7
1=>25;
0= NONE
SITION: | n 2=10 <h1
E 1=0% < 0</h1
 | A < 10 < 10 | A 10 - 24 | /R : 60% 4= CVR > 60% | BA: > 50 > 50 | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOSIZE CLASS AN TANDING SNAF | 4-5
6-7
1=>25
6= NONE
SITION:
ALYSIS
35: | n 2=10 <h1
E 1=0% < 0</h1
 | A < 10 < 10 < 10 | A 10 - 24
10 - 24 | /R : 60% 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | BA: > 50 | | | | UNDERSTOREY GRD. LAYER OF CODES TAND COMPOSIZE CLASS AND TANDING SNA DEADFALL / LOG BUNDANCE CODE | 4-5
6-7
1=>25
6= NONE
SITION:
ALYSIS
35: | n 2=10 <h1
E 1=0% < 0</h1
 | A < 10 <p>< 10</p> < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <td>A 10 - 24
10 - 24</td> <td>/R : 60% 4= CVR > 60%
25 - 50
25 - 50
25 - 50</td> <td>BA: > 50 > 50 > 50 > 50</td> | A 10 - 24
10 - 24 | /R : 60% 4= CVR > 60%
25 - 50
25 - 50
25 - 50 | BA: > 50 > 50 > 50 > 50 | | | | B UNDERSTOREY GRD. LAYER IT CODES: EVR CODES STAND COMPOS SIZE CLASS AND STANDING SNA DEADFALL / LOG BUNDANCE CODI COMM. AGE: | 4-5
6-7
1=>25 f
0= NONE
SITION:
ALYSIS
35:
35: | 2 = 10 <h1
E 1 = 0% < 0</h1
 | A < 10 < 10 < 10 N = NONE R | A 10 - 24 10 - 24 10 - 24 RARE 0 = 0 | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
MATURE | > 50 > 50 > 50 > 50 | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOSIZE CLASS AN. TANDING SNAI EADFALL / LOI BUNDANCE CODI COMM. AGE: COIL ANALYS EXTURE: | 4-5
6-7
1=>25 f
0= NONE
SITION:
ALYSIS
35:
35: | 2 = 10 <h1
E 1 = 0% < 0</h1
 | A < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO MO | A 10 - 24 10 - 24 10 - 24 10 - 24 RARE 0 = 0 MID-AGE | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50 | > 50 > 50 > 50 > 50 | | | | JUNDERSTOREY JUNDERSTOREY
JUNDERSTOREY JUNDERSTOREY JUNDERSTORE JU | 4-5
6-7
1=>25;
0= NONE
SITION:
ALYSIS
GS:
GS:
GS: | n 2 = 10 <hi
= 1 = 0% < 0</hi
 | A < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO MO DEPTH OF ORG | A 10 - 24 10 - 24 10 - 24 10 - 24 TLES / GLEY GANICS: | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
MATURE | > 50 > 50 > 50 | | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOSIZE CLASS AND TANDING SNAME EADFALL / LOG BUNDANCE CODE COMM. AGE: COLL ANALYS EXTURE: IOISTURE: | 4-5
1=>25
0= NONE
SITION:
ALYSIS
3S:
3S:
3S:
3S: | # 2 = 10-H | A < 10 < 10 < 10 < 10 < 10 < 10 VOUNG DEPTH TO MO DEPTH TO BEE | A 10 - 24 10 - 24 10 - 24 10 - 24 TLES / GLEY GANICS: | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
MATURE | > 50 > 50 > 50 > 50 | | | | JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTORE JU | 4-5
1=>25
0=NONE
SITION:
ALYSIS
GS:
GS:
GS:
SS: | PIONEER | A < 10 < 10 < 10 N = NONE R VOUNG DEPTH TO MO DEPTH TO BEE DN: | A 10 - 24 10 - 24 10 - 24 10 - 24 TLES / GLEY GANICS: | 25 - 50
25 50 | > 50 > 50 > 50 | | | | UNDERSTOREY GRD. LAYER TOODES TAND COMPOS TANDING SNAM EADFALL / LOO BUNDANCE CODI COMM. AGE: COLL ANALYS EXTURE: COMMUNITY CL | 4-5
1=>25
0= NONE
ALYSIS
3S:
3S:
3S:
3S:
S:
S:
ALASSI
ASS: | PIONEER | A < 10 < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO MO DEPTH TO BEE ON: | A 10 - 24 10 - 24 10 - 24 10 - 24 THES / GLEY GANICS: DROCK: | 25 - 50
25 50 | BA: > 50 > 50 > 50 > 50 | | | | JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTORE JU | 4-5 1=>25 0=NONE SITION: ALYSIS GS: GS: S: ILASSI ASS: RIES: | PIONEER PIONEER PIONEER PIONEER PIONEER PIONEER | A < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO BEE DN: UOUS FORG | A 10 - 24 10 - 24 10 - 24 10 - 24 THES / GLEY GANICS: DROCK: | 25 - 50 25 - 50 25 - 50 25 - 50 25 - 50 MATURE g = CODE: | BA: > 50 > 50 > 50 > 50 | | | | 3 UNDERSTOREY 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AND EXAMPLE COMPOS SIZE CLASS AND EXAMPLE COMMONITY COMMUNITY CL COMMUNITY CL COMMUNITY CL COMMUNITY SE ECOSITE: D-F | 4-5 1=>25 0=NONE SITION: ALYSIS GS: GS: GS: RIES: FPE: | PIONEER PIONEER PIONEER PIONEER PARTICIPATION PIONEER | A < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO BEE DEPTH TO BEE Naple Dec. | A 10 - 24 10 - 24 10 - 24 10 - 24 THES / GLEY GANICS: DROCK: | CODE: CODE: CODE: CODE: CODE: CODE: CODE: | BA: > 50 > 50 > 50 > 50 | | | | JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTOREY JUNDERSTORE | 4-5 1=>25 1=>25 1=>25 SITION: ALYSIS 3S: 3S: S: S: RIES: PE: | PIONEER PIONEER PIONEER PIONEER PARTICIPATION PIONEER | A < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO BEE DN: UOUS FORG | A 10 - 24 10 - 24 10 - 24 10 - 24 THES / GLEY GANICS: DROCK: | CODE: CODE: CODE: CODE: CODE: CODE: CODE: | BA: > 50 > 50 > 50 > 50 | | | | 3 UNDERSTOREY 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOSITION STANDING SNAID DEADFALL / LO ABUNDANCE CODIC COMM. AGE: HOMOGENEOUS COMMUNITY CL COMMUNITY CL COMMUNITY SE ECOSITE: D-F | 4-5 1=>25 0=NONE SITION: ALYSIS GS: GS: SS: SS: SS: ALASSI ASS: ASS: CPE: ON | PIONEER PIONEER PIONEER PIONEER PARTICIPATION PIONEER | A < 10 < 10 < 10 < 10 N = NONE R YOUNG DEPTH TO BEE DEPTH TO BEE Naple Dec. | A 10 - 24 10 - 24 10 - 24 10 - 24 THES / GLEY GANICS: DROCK: | 25 - 50 25 - | BA: > 50 > 50 > 50 > 50 | | | | ELC | SITE: T-Line | |------------------|---------------------| | | POLYGON: Feature 29 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | ŠPEČIES CODĖ | 10 | | YER | | THE COMP. | A = ABUNDANT D = | LAYER | | . 6 | | | |---------------|-----|------|------|--------|------------------|----------------------|--------|-----|-----|---|---| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL. | SPECIES CODE | 1 | 2 | 3 | 4 | | | FAGGRAN | 0 | 1 | | | - 3 | | | . 4 | | | | | FRAPENN | 0 | A | 113 | 1 | | | | 1 | | | | | QUERUBR | A | - 17 | | | I | | | 1 | | | | | ACESASA | A | A | | | | | | | | | ŀ | | Shaqbark | 0 | | Ed | | | | | | | | | | oilernot | 0 | | | | | | | | | | | | TILAMER | 0 | | - 14 | | | | | - 4 | -11 | | | | | | 4 | 5; | | araonnii i | IJ, | II. | Rel | | | | | | | 0 | | | | | | | | | | | | | - | | | | | | T | 1112 2012 | | | | | | - | | | | = ; | - | | 1 - 1 - 1 | | | 1 | | 1 | 1 1 | | | - | - | | | | | | | | | | + | | + | | | | = | | | | | | | | + | + | | | | -32 | | | \top | | | | | + | | | | | | | | | | | | + | | | | | | | | | | ==0:3 | | \Box | + | | 1 | | | | | | | | | | | | + | + | - | | N/Face Terror | | | | 9. | 2,550 | and the second | 3 | | | | | | | | 3 | | | | and State of the Art | | + | 111 | + | | | | | + | | | | | | + | + | + | - | | | | + | + | | | | | + | + | + | _ | | | | | + | + | DOSAGNICE IN CO. | | | + | + | + | _ | | | | + | + | | | | | + | - | - | - | | ELC | SITE: | 61010 | 646 | | POLYGON: 5 | UTME: | |---|---|---------------------|--|---|--|--| | COMMOINT. 1 | SURVE | YOR(S): | GAW | DATE: NOV | | | | DESCRIPTION &
CLASSIFICATION | START: | 10-5 | END | £ = 3 | UTMZ: | UTMN: | | OLYGON DES | | | 1 | 1 .uerom | PLANT FOR | M COMMUNITY | | SYSTEM | SUBS | STRATE | TOPOGRAPHIC
FEATURE | HISTORY | PLANTFOR | | | TERRESTRIAL WETLAND AQUATIC | ORGANIC MINERAL SOIL PARENT MIN. ACIDIC BEDRK. BASIC BEDRK. CARB. BEDRK. | | LACUSTRINE RIVERINE BOTTOMIAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND CUFF | MATURAL CULTURAL | PLANKTON SUBMERGED FLOATING-LVC GRAMINOID FORB LICHEN BRYOPHYTE | D LAKE POND RIVER STREAM MARSH SWAMP FEN BOG BARREN | | SITE | | | CREVICE / CAVE | COVER | CONIFEROUS MIXED | ☐ MEADOW
☐ PRAIRIE | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEDROCK | | | ROCKLAND BEACH / BAR SAND DUNE BLUFF | OPEN SHRUB TREED | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | | STAND DESCR | UPTIO | N: | Herital Age | IN ORDER OF | DECREASING I | DOMINANCE | | LAYER | НТ | CVR | (>> MUCH GRE | ATER THAN; > GR | EATER THAN; = | ABOUT EQUAL TO) | | 1 CANOPY | 2 | 1 | FRAPENN | THE WAR | British Jeke | | | 2 SUB-CANOPY | 3 | 4 | Cornus | seattle " as | O PLENUT | <u> </u> | | 3 UNDERSTOREY | 4-5 | 4 | ", 0 | ld field s | PP | ## 3 m.500 | | 4 GRD. LAYER
HT CODES:
CVR CODES | 6-7
1=>25
0= NON | m 2=10<+
E 1=0%< | T,25 m 3 = 2 <ht,10
CVR \ 10% 2= 10 < 0</ht,10
 | | 0.5 <ht-1 6="0.2</td" m=""><td><h7、0.5 7="" ht<0.2="" m="" m<="" td="" ≠=""></h7、0.5></td></ht-1> | <h7、0.5 7="" ht<0.2="" m="" m<="" td="" ≠=""></h7、0.5> | | STAND COMPOS | | | | | | BA: | | SIZE CLASS AN | | | D <10 | 0 10 - 24 | R 25 - 5 | 50 > 50 | | | | 7 100 | | 10 - 24 | 25 - 5 | 50 > 50 | | STANDING SNA | | | < 10 | 10 - 24 | | | | DEADFALL / LO | | | | 1 | | A = ABUNDANT | | COMM. AGE : | 1 | PIONEE | R YOUNG | MID-AGE | MATUR | E OLD
GROWTH | | | | 121 | Tento (N | Cigeral degree of | | | | SOIL ANALYS | IS : | | DEPTH TO M | OTTLES / GLEY | g = | G= | | TEXTURE: | | | DEPTH OF O | | 13 | (cm) | | MOISTURE: | e / V/ | PIARI F | | | 7 | (cm) | | | | | | 18 18 | - b | L. Company | | COMMUNITY C | | | | e esta | CODE | : SW | | SOMMISCH III | | | | amp | CODE | SWT | | COMMUNITY SI | | | 1-1- | amp | CODE | SWT2 | | FCOSITE: 046 | noire | | rand | al Thicket | CODE | SWT2-5 | | ECOSITE: MI | YPE: | dogu | | allicket | Sminds | | | vegetation t | YPE: | dogi | Miner | | CODE | | | ECOSITE: MI | YPE: | dogi | Miner | | CODE | | | vegetation t | YPE:
EV | dogi | Miner | 17 | CODE | | | VEGETATION T VEC - OSI INCLUS COMPINOTES: No 16 | YPE:
LEX
ange | trees | Miner | | | | | ELC | SITE: Transmission Line | |-------|-------------------------| | | POLYGON: Feature 29 | | PLANT | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | LAYER | | COLL. | SPECIES CODE | LAYER | | | | COLL | | | |--------------------|-------------|------|-------|--------------|-------------
--|-----|-----|------|----|----------| | SPECIES CODE | 1 | | 3 | 4 | COLL. | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | CORSTOL | | | | L X | | | T | | | | | | CORFORA | | - | | | | ======================================= | Τ | | 80 | | | | SOLCANA | | 1.5 | | 1 | | | 120 | | | | - | | DAUCARO | | | | - | No to | | | ÷. | | | 0.5 | | FRAPENN | | | | | | | | 7 | | | | | Populus | | Н | | | -1 7 11 | | | | - 7 | | | | THUOCCI | 21 | | | | и е | | | | 1 | | | | PINSTRO | - | -11- | 1-1 | | is the con- | 1 | | - | | | | | ULMAMER | | J= | | 177 | 4-4- | | | . = | H | | | | Red Cedar | | - | | | E-198-11 | | | | | -1 | | | teasle | | | | | in and | | | | | | | | | | | | 100 | landa d | | | | | - | | | ¥ = | | | | 111 | | | | | | | | | | | | | | | ; | | | | | - | | | | | Į. | 15 | | | Į. | | | | | | | Ľ. | 8. | | 1 | | | 184 | | λ= | | | | | (99)
167 | | | 12.0 | | E | | | | | | | 512 | | | 7 | 2 | | | H | | | Ş | <u> </u> | | | υŽ | | | - | | | | | | 41 | | | | | | Ē | | - | | L | | | | | | | | | j. | | | The state of s | - | | | 11 | | | Sugar dest de pour | Ţ | Į.į | Ė, | | d pasti | ellang com | | | | | T and | | | II. | 8 | foc | | Leif, i | | | 1. | | | <u> </u> | | | M | Ä | | - 62 | | | | | Tq | LX | | | | | | - | | | | | | | | | | | - | T | | | | | | | | | - | | 25050 | | 1 | | | | | - | | - | - | ř. | Page of | | FLC | SILE: | 161010 | 646 | | | | POLY | GON: (2 |) | | | | |----|---|------------------------|---|-------------------------|--|-----------------------|---|---------------------------------|--|---|--|--|--| | | COMMUNITY | SURVE | YOR(S): | GAI | ΛΙ | DATE: | Nov | 4.2 | 2010 | UTME:
UTMN: | | | | | | ESCRIPTION & | START | and the same | END | | -test is | me de la | UTMZ | (F.C.E.) | UTMN | | | | | | DLYGON DES | CRIP | TION | 210.0045 | SHIP OF THE | | | | EUSE | 75 | | | | | | SYSTEM | + | STRATE | | OGRAPHIC
EATURE | HIS | STORY | PLA | NT FORM | CO | MMUNITY | | | | 10 | ERRESTRIAL ORGANIC VETLAND MINERAL SOIL QUATIC PARENT MIN. ACIDIC BEDRIK. BASIC BEDRIK. CARB. BEDRIK. | | AINERAL SOIL PARENT MIN. ACIDIC BEDRIX. | | | CULTURAL | | GRADING BRY | PLANKTON SUBMERGED FLOATING-LVD. GRAMINOID FORB LICHEN BRYOPHYTE DECIDUOUS | | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG | | | | 34 | SITE | ☐ CAR | RB. BEDRK. | L ALV | /AR | C | OVER | O MIX | NIFEROUS
ED | PRA | DOW
IRIE | | | | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | | | □ BE | CKLAND
ACH / BAR
ND DUNE | SHR | UB | N A | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | | | | | S | TAND DESCR | RIPTIO | N: | | | | | | 10010 00 | | 102 12 | | | | | LAYER | нт | CVR | (>> 8 | SPECIES
NUCH GREA | TER TH | AN; > GRI | EATER 1 | ASING DO
THAN; = AB | DUT EC | UAL TO) | | | | 1 | CANOPY | 4 | 4 | Reec | d Cano | ry | 1 1072 | | Type Ba | 4 | | | | | 2 | SUB-CANOPY | 5 | 4 | 12 | 11 | 1/ | =0=0 | | 152 2 | | T 10 | | | | 3 | UNDERSTOREY | 6 | 4 | | , , | 150 | | F . | 138 | 1 | | | | | | GRD. LAYER
CODES:
OR CODES | 7
1 = >25
0= NON | m 2 = 10 <h
E 1= 0% <</h
 | 4
T√25 m
GVR √ 10 | 3 = 2 <ht;10 m<br="">% 2= 10 < C\</ht;10> | 1 4 = 1<1
/R < 25% | 17-2 m 6 = 0
3= 25 < CV | 0.5 <ht 1<br="">R < 60%</ht> | m 6 = 0.2 <ht
4= CVR > 601</ht
 | -0.5 m 1 | ' ⊌ HT<0.2 m | | | | ST | AND COMPOS | SITION | 2150 | B) E | | in the | A STATE | | | BA: | and the second | | | | SI | ZE CLASS AN | ALYSIS | 3: | V | < 10 | | 10 - 24 | | 25 - 50 | | > 50 | | | | SI | ANDING SNA | GS: | J | | < 10 | r | 10 - 24 | Í | 25 - 50 | | > 50 | | | | DE | EADFALL / LO | GS: | | | < 10 | | 10 - 24 | | 25 - 50 | | > 50 | | | | AE | SUNDANCE CODE | ES: | 7 72 | N = N | ONE . R | = RARE | 0 = 0 | CCASI | ONAL A = | ABUND | ANT | | | | C | OMM. AGE : | Tes. | PIONEER | · X | YOUNG | | MID-AGE | 1748 | MATURE | | OLD
GROWTH | | | | S | OIL ANALYS | S: | | | | F 1-3.9 | | | | | - (0) | | | | | EXTURE: | R | | DEP | TH TO MO | TTLES | / GLEY | g = | | G= | | | | | M | OISTURE: | | II = =_ | DEP | TH OF OR | GANIC | S: | 11 | | E | (cm) | | | | H | OMOGENEOU | S / VA | RIABLE | DEP | TH TO BE | DROC | (: | 1107 115 | | fine. | (cm) | | | | | | | Mar | 1 | | | | | CODE: | MA | | | | | _ | OMMUNITY SE | | | 1 | ΛΛ | L | | No. | CODE: | | M | | | | 0 | | - | Mead | | | 1-13-04 | MV290 | 19.50 | CODE: | 11.0 | +M2 | | | | E | SUBITE. /VI | nevo | | ado | | ars | Miner | .1 | CODE: | | | | | | _ | EGETATION TO | YPE: / | | LOUNCE! | V COCA | 22 1 | VIIIE | ~1 | Λ. | A A A | 12-2 | | | | ļ | EGETATION T | TPE: A | Meado | WA | larsh | | y Deta | THE PARTY | 10 | IAN | 4114 | | | | _ | EGETATION TO | | Meado | w A | ry Gra
Navsh | | 9510454
 | Maria San | CODE: | (A) | | | | | ļ | 2 77.10574 | ION | Meado | w A | Navsh | | STATE AND ADDRESS OF THE ADDRESS OF THE STATE AND | | | LA A | | | | | LIST | SURVEYOR(S): | | |---------|---------------------|-----------| | SPECIES | DATE: | | | PLANT | POLYGON: Feature 29 | | | ELC | SITE: T-Line | Sales All | | SPECIES CODE | 142 | LA | YER | ** | COLL. | SPECIES CODE | | LA | COLL | | | |----------------|------|-----|--------|-------|-----------|-------------------|-----|-----|------|-------|--------| | SPECIES CODE | 1 | 2 | 3 | 4 | | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | Reed Canary | D | D | D | D | | | | | | | | | | | | - 8 | | | 20 200 | | | | | | | | | | 19 | 1 | П | | | | | | | | | | 7. |
<u> </u> | | | | | - 00 | | | * * = 1 = 9 = | | 17 | | 7.5 | | 展 李宝。康 | | | | | 11 110 | | | | | 4 | 10 | | | | | | 163 | | | Sec. 1 | | | | | | | | | | | | | * 12 | 7 | | | | | | | | | | | | | | | | | 7 | | | -10 | | | | | | | | 17 - | 5 | | | | A | vif | 18 | | | | | | | | | | 14 | | 3 | jai j | | | 51 | | | | Miles | | | 17 | | (2) | 5.44 | | | | 153 | 4 | | | | TERMINATE TO | 18 | E. | 2275 | 1.1 | DEADER ! | 16 16 16 16 1 2 c | 102 | 7.0 | | | | | BRINGE TOSTING | | | | 19) | Taken I | | | 177 | | -1111 | | | | 1100 | | - Mari | | | are transferral | | | | 974 | | | 184-96 | | | 1781 | Es s | \$400 May | | | | | | | | ELECTION . | 10 | , 4 | WIL. | | | | | | | | | | 56.444 | | | | 7 | 100 | | | | | | | Page of | | SITE: | | | | POLYGON: 2 | | | |--|--|--
--|---|--|---|--| | ELC | SURVE | YOR(S): | | DATE: | | UTME | | | DESCRIPTION & | START | A STATE OF | END | and the reconstruction of the | UTMZ: | UTMN: | | | OLYGON DE | SCDID. | TION | | | 16001 | | | | SYSTEM | _ | STRATE | TOPOGRAPHIC FEATURE | HISTORY | PLANT FORM | COMMUNITY | | | TERRESTRIAL ORGANIC WETLAND MINERAL SOIL AQUATIC PARENT MIN. ACIDIC SEDRI | | ERAL SOIL
ENT MIN.
DIC BEDRK | LACUSTRIME RIVERINE BOTTOMLAND TERRACE VALLEY SLOPE TABLELAND ROLL UPLAND CLIFF | MATURAL CULTURAL | PLANKTON SUBMERGED FLOATING-LVD GRAMINOID FORB LICHEN BRYOPHYTE DECIDUOUS | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG | | | SITE | ☐ CAR | 8. BEDRK. | TALUS CREVICE / CAVE | COVER | CONIFEROUS | BARREN MEADOW PRAIRIE | | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | | | ROCKLAND BEACH / BAR SAND DUNE BLUFF | OPEN SHRUB TREED | 4.4 | ☐ PRAIRIE ☐ THICKET ☐ SAVANNAH ☐ WOODLAND ☐ FOREST ☐ PLANTATION | | | TAND DESCR | RIPTIO | N: | | | | n - Agent | | | LAYER | нт | CVR | SPECIES (>> MUCH GREA | IN ORDER OF C
TER THAN; > GR | ECREASING DO | MINANCE
OUT EQUAL TO) | | | CANOPY | 4 | 4 | reed canar | ry grass | 1 1 tar. 20 | ¥ 1 1 1 1 2 5 1 | | | SUB-CANOPY | 5 | 4 | 11 11 | 1 3 | The second | | | | UNDERSTOREY | - | 4 | " " | 6 3 | | 1 | | | | | | - 1, | AN CONTRACTOR OF THE PARTY | The Ak | G all or | | | | 7
1 = >25
0= NONI | m 2=10<+
E 1=0% < | | n 4 = 1 <ht⊰2 5="<br" m="">√R √25% 3= 25 < C\</ht⊰2> | 0,5 <ht<1 6="0.2<HT<br" m="">/R < 60% 4= CVR > 609</ht<1> | .0.5 m 7 = HT<0.2 m | | | T CODES:
VR CODES
TAND COMPO | 1 = >25
0= NONI
SITION: | m 2=10 <h
E 1=0% <</h
 | 17-25 m 3 = 2 <ht-10 n<="" td=""><td>10 - 24</td><td>0.5<ht 1="" 6="0.2<HT<br" m="">/R < 60% 4= CVR > 609</ht></td><td>BA: > 50</td></ht-10> | 10 - 24 | 0.5 <ht 1="" 6="0.2<HT<br" m="">/R < 60% 4= CVR > 609</ht> | BA: > 50 | | | CODES:
TR CODES TAND COMPOSE ZE CLASS AN | 1 = >25
0= NONI
SITION: | m 2=10 <h
E 1=0% <</h
 | 17:25 m 3 = 2 <ht;10 n<br="">CVR < 10% 2= 10 < C1</ht;10> | VR 3 25% 3= 25 < CV | /R < 60% 4= CVR > 609 | BA: > 50 | | | CODES:
R CODES AND COMPOSE ZE CLASS AN | 1 = >25
0= NONI
SITION:
ALYSIS
GS: | m 2=10 <h
E 1=0% <</h
 | 17:25 m 3 = 2 <ht (10="" n<br="">CVR (10% 2= 10 < CV
< 10 < 10</ht> | 10 - 24
10 - 24 | /R < 60% 4= CVR > 609 | BA: | | | CODES: R CODES TAND COMPOSE ZE CLASS AND TANDING SNAFALL / LO | 1 = >25
0= NONI
SITION:
ALYSIS
GS:
GS: | m 2=10 <h
E 1=0% <</h
 | (1):25 m 3 = 2 <ht (10="" n<br="">CVR (10% 2=10 < CV
< 10 < 10 < 10 < 10</ht> | 10 - 24
10 - 24
10 - 24 | 25 - 50
25 - 50
25 - 50 | BA: > 50 > 50 | | | T CODES:
VR CODES TAND COMPOSIZE CLASS AND TANDING SNADEADFALL / LOBUNDANCE COD | 1 = >25
0= NONI
SITION:
ALYSIS
GS:
GS: | m 2=10 <h
E 1=0% <</h
 | (7) 25 m 3 = 2 <ht (10="" n<br="">CVR (10% 2= 10 < CV
< 10 < 10
< 10
< 10
< 10
× 10</ht> | 10 - 24
10 - 24
10 - 24 | 25 - 50
25 - 50
25 - 50 | > 50
> 50
> 50
> 50 | | | T CODES:
VR CODES TAND COMPOSIZE CLASS AN: TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: | 0= NONI SITION: ALYSIS GS: ES: | m 2=10 <h
E 1=0% <</h
 | 17:25 m 3 = 2 <ht (10="" n)<="" p=""> CVR < 10% 2= 10 < CV < 10 < 10 < 10 < 10 N = NONE - R YOUNG DEPTH TO MO</ht> | 10 - 24
10 - 24
10 - 24
= RARE 0 = 0 | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50 | > 50
> 50
> 50
> 50
OLD
GROWTH | | | CODES: R CODES AND COMPOS ZE CLASS AN. ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OISTURE: | 1 = >25
0= NONI
SITION:
ALYSIS
GS:
ES:
IS: | m 2=10 <h< td=""><td>17:25 m 3 = 2<ht (10="" n)<="" p=""> CVR < 10% 2= 10 < CV < 10 < 10 < 10 < 10 N = NONE - R YOUNG DEPTH TO MO DEPTH OF OR</ht></td><td>10 - 24
10 - 24
10 - 24
= RARE 0 = 0
MID-AGE</td><td>25 - 50
25 - 50
25 - 50
CCASIONAL A = /</td><td> > 50 > 50 > 50 > 50 </td></h<> | 17:25 m 3 = 2 <ht (10="" n)<="" p=""> CVR < 10% 2= 10 < CV < 10 < 10 < 10 < 10 N = NONE - R YOUNG DEPTH TO MO DEPTH OF OR</ht> | 10 - 24
10 - 24
10 - 24
= RARE 0 = 0
MID-AGE | 25 - 50
25 - 50
25 - 50
CCASIONAL A = / | > 50 > 50 > 50 > 50 | | | CODES: PRICODES FAND COMPOSITION FANDING SNA S | 1 = >25
0= NONI
SITION:
ALYSIS
GS:
ES:
IS: | m 2=10 <h< td=""><td>17:25 m 3 = 2<ht (10="" n)<="" p=""> CVR < 10% 2= 10 < CV < 10 < 10 < 10 < 10 N = NONE - R YOUNG DEPTH TO MO</ht></td><td>10 - 24
10 - 24
10 - 24
= RARE 0 = 0
MID-AGE</td><td>25 - 50
25 - 50
25 - 50
CCASIONAL A = /</td><td>> 50
> 50
> 50
> 50
OLD
GROWTH</td></h<> | 17:25 m 3 = 2 <ht (10="" n)<="" p=""> CVR < 10% 2= 10 < CV < 10 < 10 < 10 < 10 N = NONE - R YOUNG DEPTH TO MO</ht> | 10 - 24
10 - 24
10 - 24
= RARE 0 = 0
MID-AGE | 25 - 50
25 - 50
25 - 50
CCASIONAL A = / | > 50
> 50
> 50
> 50
OLD
GROWTH | | | CODES: //R CODES //R CODES TAND COMPOS ZE CLASS AN. FANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: OIL ANALYS EXTURE: OMOGENEOU OMMUNITYC | 1 = >25
0 = NONI
SITION:
SITION:
GS:
GS:
ES:
IS:
IS: | 2 = 10-k 1 = 0% 2 = 10-k 1 = 0% 2 = 10-k 3 = 10-k 4 = 10-k 5 = 10-k 7 = 10-k 7 = 10-k 8 = 10-k 9 10- | | 10 - 24
10 - 24
10 - 24
= RARE 0 = 0
MID-AGE | 25 - 50
25 - 50
25 - 50
CCASIONAL A = / | BA: > 50 | | | CODES: PRICODES FAND COMPOS ZE CLASS AN. FANDING SNA | 1 -> 25
0 = NONI
SITION:
ALYSIS
GS:
GS:
ES:
IS:
S / VA
CLASS: | PIONEEL | CVR < 10% 2= 10 < 10% 2= 10 | 10 - 24
10 - 24
10 - 24
10 - 24
RARE 0 = 0
MID-AGE
TTLES / GLEY
GANICS:
DROCK: | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
26 - 50
27 - 50
28 - 50
29 - 50
CCASIONAL A = / | BA: > 50 | | | T CODES: VR CODES TAND COMPOSIZE CLASS AN. TANDING SNA EADFALL / LO BUNDANCE COD COMM. AGE: COLL ANALYS EXTURE: COMMUNITY CL COMMUNITY CL COMMUNITY SE | 1 - 25
0 - NONI
SITION:
SITION:
ALYSIS
GS:
ES:
IS:
S / VA
CLASS
ASS:
ERIES: | PIONEEI RIABLE Meac Meac | CVR < 10% 2= 10 < CVR | 10 - 24
10 - 24
10 - 24
10 - 24
RARE 0 = 0
MID-AGE
TTLES /
GLEY
GANICS:
DROCK: | 25 - 50
25 - 50
25 - 50
25 - 50
25 - 50
26 - 50
27 - 50
28 - 50
29 - 50
CCASIONAL A = / | > 50 > 50 > 50 | | | T CODES: VR CODES TAND COMPOSITE CLASS AND COMPOSITE CODES TANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: COMM. AGE: COMMUNITY CL COMMUNITY CL COMMUNITY CL COMMUNITY SE COSITE: MA | 1 - 25 0 = NONI SITION: SITION | PIONEEI RIABLE Meac Meac | CVR < 10% 2= 10 < 10% 2= 10% | 10 - 24
10 24 | 25 - 50 25 - 50 25 - 50 25 - 50 CCASIONAL A = / MATURE | > 50 > 50 > 50 | | | CODES: //R CODES //R CODES TAND COMPOS ZE CLASS AN. TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: OIL ANALYS EXTURE: OISTURE: OMOGENEOU OMMUNITY CL OMMUNITY CL OMMUNITY SE COSITE: M, | I = >25
0= NONI
SITION:
SITION:
SITION:
GS:
GS:
ES:
IS:
IS:
IS:
IS:
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC.
INC. | PIONEE! PIONEE! Mars Meac | CVR \ 10% 2=10 < CVR \ 10% 2=10 < CVR \ 10% 2=10 < CVR \ 10% 2=10 < CVR \ 10% 2=10 < CVR \ 10 | 10 - 24 10 - 24 10 - 24 10 - ARRE 0 = 0 MID-AGE TTLES / GLEY GANICS: DROCK: | 25 - 50 25 - 50 25 - 50 25 - 50 CCASIONAL A = / MATURE | > 50 > 50 > 50 | | | ELC | SITE: T-Line | Longs G | |------------------|---------------------|---------| | | POLYGON: Feature 10 | dimo-4 | | PLANT
SPECIES | DATE: | | | LIST | SURVEYOR(S): | | | SPECIES CODE | | LA | YER | | COLL. | SPECIES CODE | LAYER | | | | | |-------------------------------------|----------|----------|------|----------|----------------|--------------------|----------|------|----------|----------|-----| | | | 2 | 3 | 4 | | SPECIES CODE | 1 | - | 3 | 100 | COL | | Reed Canary | D | D | D | D | W | | | | | | | | 1 | | | | | | 1 | | - | | | | | | | | | | | - | | | | | | | | | | | | | \vdash | | | | | | | + | - | | - | | | - | | | | | | | | - | | | | | + | | | | | | | +- | | | | | | | | 10 | - | | | | +- | | | \vdash | | | | | _ | | | | | \vdash | | - | - | | | _ | | | | | | | - | _ | | | | | | | | | | | | - | | | | 35 | | _ | | | \dashv | | | (1) | _ | | | _ | i i | IIV LENVES | | | | | | | | | | | | | | | l a | B | | | | | 8 | 250 | - 33 | | | =0-1025 Wester | gi | 12.6 | 1.55 | | 100 | N. T. | | 12% | 92. | 1 | | | - 1475 - 1977 ALE | 200 | 11/3 | 2/14 | - 3 | 1649 | 2 V5/WCX- 1 | 10 | VIG. | | + | | | This is the | | patrice. | 1 | (0) | THE WAY | ENGRALANCE V TOOLS | | - | | | | | | | | | + | | | | - | \dashv | - | | | · · · · · · · · · · · · · · · · · · | | | Rel | VO. 1 | arriver of | | | | + | + | | | Missi
Section Confe | | 1 | | | | | | - | + | \dashv | | | 5.5° NOTE: | | | 10 K | | Stimulation in | | | | - | 4 | - | | HE SALO | | | | P. | | A 157 | | | | | | Page of | Stantec | 70-1 Sout
Guelph, C
N1G 4P5
Tel: (519) | onsulting Ltd.
hgate Drive
Intario, Canada
836-6050
836-2493 | Feature 3b Wildlife Habitat Assessment Rolygon (3) T-line | | | | | | |---------------------|---|--|--|-----------------|------------------------|--|--|--| | Project Number | 161010646 | ang emal ne | Project Nam | ie: SamsuN | G | | | | | Date / Time: | v. 4. 10 | | Field Persor | nnel: GAW | | | | | | Weather Conditions: | Temp: | Wind: | Cloud: 100 /. | PPT: light rain | PPT in last
24 hrs: | | | | Reptile Hibernacula Features i.e. features that would provide a route underground, including buried concrete or rock (e.g. foundations, bridge abutments or culverts with cracks/entry points, exposed rock crevices or inactive animal burrows) Does the site contain potential reptile hibernacula features? Yes No (if yes, On Known describe details in Table 1). Bat Hibernacula Features i.e. karst topography, abandoned mines or caves Does the site contain potential bat hibernacula features? Yes No (if yes, On Known describe details in Table 1). Table 1: Potential bat/reptile hibernacula features identified on site | UTM | Feature
type | Photo # | Description | Species
observed using
feature | |---------------------|-----------------|---------|-------------|--------------------------------------| | | | | | | | | × 1 | | | Ē | | # 01.10 21 PF 12.20 | | | | | ### **Species Observations** List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |------------------------------|---------|-------|------------------------------|-------| | i.e. AMRO/VO NOCA ANGO GRCA | -/ | 7 | | | | DOWO | | × | | | | | | × | | | ## Woodland Assessment- complete 1 assessment for each woodland Woodlot # (indicate on map): Polygon 3 Approximate age of stand Mature Are large (i.e. >40cmDBH and >25m tall) trees present Yes No None seen from road If yes, approximate # present or % of stand __ Location in stand (i.e throughout, in west side only, in FOD2-6 only etc..) Are snags present? Yes No Unknown If yes provide characterization of number present, height and DBH of snags and indicate if they contain loose bark. Trees with cavities present? No Rare Occasional Abundant Unknown Height ranges of Range of Tree Range of Cavity Cavity sizes DBH Heights (approx. tree diameter) Bat Mat Roost? None seen Presence of large stick nests (i.e. raptor nests)? ☐ Yes ☐ No None seen If yes, UTM and describe tree type, height and position in tree, size of nest, species present Evidence of disturbance? (i.e logging, roads, paths, ATV use, trails) Yes No unknown If yes, describe ___ Seeps/ springs present? Yes No unknown If yes, Surrounding Habitat Seep/Spring # UTM Description Unknown Vernal Pools Present? ☐ Yes ☐ No If yes, Location Depth of water Size of pool Presence of Presence of shrubs. (diameter) emergent/submergent logs at pond edge veg? | ELC | SITE: | 61010 | 646 | , | | | - | on: (3) | | |
--|--|--|--|---|---------------------------------------|---|---|---|--|--| | COMMUNITY | SURVEY | OR(S): | SAV | J | DATE: | Nov. | 4.10 | | UTME | 55_ | | DESCRIPTION & L | START: | | END | | | | UTMZ: | | UTMN: | | | OLYGON DES | CRIP1 | TION | | 91 | | | | | 1 | | | SYSTEM | SUBS | TRATE | | OGRAPHIC
EATURE | HIS | TORY | PLAN | IT FORM | CO | MUNITY | | TERRESTRIAL
WETLAND
AQUATIC | PARE | RAL SOIL | AL SOIL BOTTOMLAND THIN UT MIN. C BEORK. C BEORK. C BEORK. C BEORK. C BEORL UPLAND | | | NATURAL CULTURAL | | IKTON MERGED VTING-LVD. MINOID B EN DPHYTE DUOUS | LAKE | D
R
EAM
SH
MP | | SITE | | B. BEDRK. | □ TAL | US
EVICE / CAVE | C | OVER | OMIXE | FEROUS
D | ☐ MEA | DOW
RIE | | OPEN WATER
SHALLOW WATER
SURFICIAL DEP.
BEDROCK | RIPTION | | □ BE | CKLAND
ACH / BAR
ND DUNE
JFF | OPE | J18 | | | WOO | MANNAH | | TAND DESCR | IPTIO | N: | TIM | Trible P | Latine | | 110.2 | | | or | | LAYER | нт | CVR | (>> [| SPECIES
WUCH GREA | IN ORD | DER OF D
AN; > GRE | EATER T | HAN; = AB | OUT EC | UAL TO) | | CANOPY | 1-2 | 4 | Shaq | bask. | Quero | cus. A | cer. | FRAP | ENA | | | SUB-CANOPY | 3 | 4 | - 3 | 120. | Mues | | ar en | 11 130 | | -11 | | UNDERSTOREY | 4-5 | 4 | | | | 1 19 | A E | 14 (6) | | | | COR LAVER | 6-7 | i i | - 1 | 0.11 | | 0.00 | 3.00 | | | | | | 1 = >25 | 1 1 1 | 17-,25 m | 3 = 2 <ht -="" 10="" i<="" th=""><th>m 4 = 1<</th><th>17:2m 5=0</th><th>0.5<ht-1 i<="" th=""><th>m 8 = 0.2<h
4= CVR > 60</h
</th><th>7. 0.5 m 7</th><th>= HT<0.2 m</th></ht-1></th></ht> | m 4 = 1< | 17:2m 5=0 | 0.5 <ht-1 i<="" th=""><th>m 8 = 0.2<h
4= CVR > 60</h
</th><th>7. 0.5 m 7</th><th>= HT<0.2 m</th></ht-1> | m 8 = 0.2 <h
4= CVR > 60</h
 | 7. 0.5 m 7 | = HT<0.2 m | | T CODES:
VR CODES | 1 = >25 (
0= NON | 71 2=10<+
E 1=0% < | 17-25 m
: CVR \ 10 | 3 = 2 <ht<10:
0% 2= 10 < C</ht<10:
 | n 4 = 1<\ | 17-2 m 5 = 0
3= 25 < CV | 0.5 <ht-1 i<br="">R < 80%</ht-1> | m 8 = 0.2 <h
4= CVR > 60</h
 | BA: | = HT<0.2 m | | T CODES:
VR CODES
TAND COMPOS | 1 = >25
0 = NONE
SITION: | 7 2 = 10<1
E 1 = 0% < | 17.25 m
CVR \ 10 | 3 = 2 <ht<10 i<br="">0% 2= 10 < C
< 10</ht<10> | n 4=1<-1
VR \ 25% | 17-2 m 5 = 6
3= 25 < CV | 0.5 <ht.11< td=""><td>m 8 = 0.2<h
4= CVR > 60
25 - 50</h
</td><td></td><td>> 50</td></ht.11<> | m 8 = 0.2 <h
4= CVR > 60
25 - 50</h
 | | > 50 | | CODES: /R CODES TAND COMPOS ZE CLASS AN | 1 = >25 I
6= NONE
SITION: | 7 2 = 10<1
E 1 = 0% < | CVR . 10 | 0% 2≈ 10 < C | n 4 = 1<-
VR \ 25% | 3= 25 < CV | R < 80% | 4= CVR > 50 | | | | CODES: TR CODES TAND COMPOS ZE CLASS ANA | 1 = >25 i
0= NONE
SITION:
ALYSIS
GS: | 7 2 = 10<1
E 1 = 0% < | CVR . 10 | 2= 10 < C
< 10 | n 4 = 1<-
VR · 25% | 3= 25 < CV | R < 80% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | CODES: R CODES AND COMPOS ZE CLASS AN/ FANDING SNA- EADFALL / LO | 1 = >25 i
0= NONE
SITION:
ALYSIS
GS:
GS: | 7 2 = 10<1
E 1 = 0% < | A | < 10
< 10
< 10
< 10 | A A A RARE | 10 - 24
10 - 24
10 - 24 | R < 80% | 25 - 50
25 - 50
25 - 50 | | > 50
> 50
> 50 | | T CODES: VR CODES TAND COMPOS IZE
CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE COD | 1 = >25 i
0= NONE
SITION:
ALYSIS
GS:
GS: | 7 2 = 10<1
E 1 = 0% < | A N=1 | < 10
< 10
< 10
< 10 | A A | 10 - 24
10 - 24
10 - 24 | OCCASIO | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | T CODES: VR CODES TAND COMPOS IZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE CODI COMM. AGE: | GS: | m 2 = 10 <h
E 1= 0% <</h
 | A N=1 | < 10
< 10
< 10
< 10
NONE - F | A A | 10 - 24
10 - 24
10 - 24
0 = 0 | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT | | CODES: //R CODES FAND COMPOS ZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE CODI OMM. AGE: QIL ANALYS | GS: | m 2 = 10 <h
E 1= 0% <</h
 | A | < 10
< 10
< 10
< 10
NONE - F | A A | 10 - 24
10 - 24
10 - 24
0 = 0 | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT | | CODES: /R CODES TAND COMPOS IZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE CODI OMM. AGE: COIL ANALYS EXTURE: | GS: | m 2 = 10 <h
E 1= 0% <</h
 | A N=1 | < 10
< 10
< 10
< 10
NONE - F | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT | | TODES: VR CODES TAND COMPOS IZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE CODI COMM. AGE: SOIL ANALYS EXTURE: MOISTURE: | 1 = >25 0 = NONI SITION: ALYSIS GS: GS: ES: | m 2= 10-h
E 1= 0% < | A N=1 | < 10 < 10 < 10 NONE - FYOUNG | A A REPORTED TILES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | TODES: //R CODES //R CODES TAND COMPOS IZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: COIL ANALYS EXTURE: ROISTURE: | 1 =>251
0= NONI
SITION:
ALYSIS
GS:
GS:
ES: | PIONEE | A N=1 | < 10 < 10 < 10 < 10 NONE - F YOUNG PTH TO MC | A A REPORTED TILES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | CODES: /R CODES TAND COMPOS ZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: COLL ANALYS EXTURE: IOISTURE: COMMUNITYC | 1 =>25 0= NONI | PIONEE | DEF | < 10 < 10 < 10 < 10 NONE - F YOUNG PTH TO MC | A A REPORTED TILES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | | CODES: //R CODES //R CODES TAND COMPOS ZE CLASS AN/ TANDING SNA EADFALL / LO BUNDANCE COD OMM. AGE: OIL ANALYS EXTURE: IOISTURE: IOMOGENEOU COMMUNITY CI | 1 =>25 0= NON! SITION: SITION: ALYSIS GS: GS: ES: IS: S / VA CLASS | PIONEE | DEF
DEF | < 10 < 10 < 10 < 10 NONE - F YOUNG PTH TO MC PTH TO BE | A A REPORTED TILES | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = | BA: ABUND G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | T CODES: VR CODES TAND COMPOS IZE CLASS AN/ TANDING SNA DEADFALL / LO BUNDANCE CODI COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY CI COMMUNITY SI | 1 = >25 0= NON! 0= NON! SITION: ALYSIS GS: ES: IS: CLASS LASS: ERIES: | PIONEE PIONEE ARIABLE EIFICAT Fove | DEF
DEF
DEF
CON: | < 10 < 10 < 10 < 10 NONE · F YOUNG TH TO MC TH TO BE | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A =
MATURE | BA: ABUND G= | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | T CODES: VR CODES TAND COMPOS IZE CLASS AN/ ITANDING SNA DEADFALL / LO BUNDANCE CODE COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY COMMUNITY COMMUNITY SI ECOSITE: DE | TE > 25 0= NONI O = | PIONEE PIONEE ARIABLE EIFICAT Fove | DEF
DEF | < 10 < 10 < 10 < 10 NONE · F YOUNG TH TO BE | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 6
MID-AGE | OCCASIO | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A =
MATURE | BA: Control | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | TODES: VICODES STAND COMPOS SIZE CLASS AN/ STANDING SNA DEADFALL / LO BUNDANCE COD COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITYS | TE > 25 0= NONI O = | PIONEE PIONEE ARIABLE EIFICAT Fove | DEF
DEF
DEF
CON: | < 10 < 10 < 10 < 10 NONE · F YOUNG TH TO MC TH TO BE | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 6
MID-AGE | OCCASIO | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: G= FO | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | TODES: VICODES STAND COMPOS STAND COMPOS STANDING SNA DEADFALL / LO BUNDANCE CODE COMM. AGE: SOIL ANALYS TEXTURE: HOMOGENEOU COMMUNITY COMMUNITY SI ECOSITE: DE | SITION: ALYSIS GS: GS: ES: IS: LASS LASS: ERIES: SVE | PIONEE PIONEE ARIABLE EIFICAT Fove | DEF
DEF
DEF
CON: | < 10 < 10 < 10 < 10 NONE · F YOUNG TH TO MC TH TO BE | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 6
MID-AGE | OCCASIO | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: CODE: | BA: G= FO | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | T CODES: VR CODES TAND COMPOS IZE CLASS ANA ITANDING SNA SN | SITION: ALYSIS GS: ES: IS: CLASS LASS: ERIES: YPE: | PIONEE PIONEE ARIABLE EIFICAT Fove | DEF
DEF
DEF
CON: | < 10 < 10 < 10 < 10 NONE · F YOUNG TH TO BE | A A A A A A A A A A A A A A A A A A A | 10 - 24
10 - 24
10 - 24
0 = 6
MID-AGE | OCCASIO | 25 - 50 25 - 50 25 - 50 25 - 50 NAL A = MATURE CODE: CODE: | BA: G= FO | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | | ELC | SITE: Transmission Line | |------------------|-------------------------| | | POLYGON: Feature 36 | | PLANT
SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | LAYER | | COLL. | SPECIES CODE | LAYER | | | | COLL. | | | |---------------|--------|------|-------|--------------|-------------|--------------|-----|-----|-------|------|----------| | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | QUEMACR | 0 | | | = | | | | | | | | | Shagbark | A | 7,77 | | 7,72 | | | | | | | | | ACESASA | Α | =0 | | - | | | | | = | | | | FRAPENN | 0 | | | | | | | | | | | | PINSTRO | 1 /112 | R | RHACATH | | 77 | 0 | | | | | | | | | | | | | | Į i | | | | | | | | | | | | - | 1140 | i | | - | | | | | | | | | 100 | | | | - | | _ | | | | | | | - | | | | | | | | | | | - | | | 7=1 | l'anne | | | | | | 257.1 | | | | ne. | 2.7 | Į. | feet ment | | | | | | <u>F</u> | | | 1.3 | ψ\c | ŧ., | | | | | | | | ti = | | | | - | | | | | - | | | | | | TOWN THE MA | | | | | 7 | | - | - | | | 1 | | | | | | | | | | | - | | | | | | Ų., | 8. | | | Д | T | ų, | | | 1 | | i cainototaa | | 胴 | 12 | II. | Taken i | | 6 | ů_ | 1 | | T com | | | | _ | 8-31 | | | | 10 | | | | - | | | | Sji | | 658 | Sec. 367 75 | 44 | .10 | 039 | asii | QFA. | | | | 4 | | - | 140 | | | - | | - | | | | 1 = 1 1111941 | +- | | | | 7 | | | | | | | Page of | ELC | SITE: | | | | PO | POLYGON: (4) | | | | | | |---|--|---|---|--|----------------|---|---------
--|-------------------------------------|--|--| | COMMUNITY | SURVE | YOR(S): | | | DATE: | | 2 | | UTME | | | | DESCRIPTION & CLASSIFICATION | START | P | END | | | | UTI | MZ: | UTMN | | | | POLYGON DES | SCRIP | TION | | | _ | | | | | | | | SYSTEM | SUB | STRATE | | POGRAPHIC EATURE | HIS | STORY | Pt | ANT FORM | CO | MMUNITY | | | TERRESTRIAL WETLAND AQUATIC | □ PAR | ERAL SOIL
ENT MIN.
DIC BEDRK. | D RIV | ACUSTRINE
RIVERINE,
BOTTOMLAND
ERRACE
FALLEY SLOPE
ABLELAND | - | NATURAL CULTURAL | | LANKTON
SUBMERGED
LOATING-LVD.
GRAMINOID
FORB | DAKI | ED
ER
EAM
ISH
AMP | | | THE REAL PROPERTY. | 1 | C BEDRK. | D CL | ILL UPLAND
IFF
LUS
EVICE / CAVE | | 0.45 | -183 | IRYOPHYTE
DECIDUOUS
CONIFEROUS
MIXED | FEN BOG BAR | REN | | | SITE OPEN WATER | ¥32 | | □ AL | | OPEN | OVER | - " | MAED | D PRA | RIE | | | SHALLOW WATER SURFICIAL DEP. BEDROCK | TEMM | | | ND DUNE | SHRU | | | | SAVANNAH WOODLAND FOREST PLANTATION | | | | STAND DESCR | RIPTIO | N: | Trib | PI-DEO. | LLEE GR | FIEL. | | | 461126 | PATRICULA I | | | LAYER | нт | CVR | (>> 1 | | | | | EASING DOI
R THAN; = AB | | | | | 1 CANOPY | 1-2 | -4 | | rcus, P | | | | LYME | 9 10 | OFFICE STATES | | | 2 SUB-CANOPY | 3 | 4 | 14-33 | Miles n | , | 31 | | | | | | | | | | | | V I | 4 74 | Ti. | 1 2 - 3 | 9 | | | | 3 UNDERSTOREY
4 GRD. LAYER | 4-5 | 4 | 81 | 100 | L | KOTAN: | | The street | | - 4 | | | | 6-7
1 = >25 r
0= NONE | 1= 0% < | | | | | | :1 m 6 = 0.2 <ht
% 4= CVR > 60%</ht
 | | ≠ HT<0.2 m | | | 4 GRD. LAYER
HT CODES:
CVR CODES | 1=>251
0= NONE | 1= 0% < | | | | | | | | = HT<0.2 m | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS | 1=>25 I
0= NONE
SITION: | 1= 0% < | CVR v 10 | 2= 10 < CV
< 10 | | 3= 25 < CV | | % 4= CVR > 609 | BA: | > 50 | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA | 1=>25 II
0= NONE
BITION:
ALYSIS | 1= 0% < | CVR v 10 | < 10
< 10 | | 10 - 24
10 - 24 | | 4= CVR > 60%
25 - 50
25 - 50 | BA: | iř | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS | 1=>25:
0= NONE
SITION:
ALYSIS
3S: | 1= 0% < | CVR v 10 | < 10
< 10
< 10
< 10 | | 10 - 24
10 - 24
10 - 24 | R : 60° | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC | 1=>25:
0= NONE
SITION:
ALYSIS
3S: | 1= 0% < | CVR . 10 | < 10
< 10
< 10
< 10 | D D = RARE | 10 - 24
10 - 24
10 - 24 | R : 60° | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI | 1=>251
0= NONE
BITION:
ALYSIS
3S:
3S: | L]
n 2 = 10 <h
E 1 = 0% <</h
 | A N=N | < 10
< 10
< 10
< 10
ONE - R | D D = RARE | 3= 25 < CVI
10 - 24
10 - 24
0 = 0
MID-AGE | R · 60° | 25 - 50
25 - 50
25 - 50
25 - 50
MATURE | BA: | > 50
> 50
> 50
> 50 | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: | 1=>251
0= NONE
BITION:
ALYSIS
3S:
3S: | L]
n 2 = 10 <h
E 1 = 0% <</h
 | N=N | < 10 < 10 < 10 < 10 ONE - R YOUNG | D D = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
AID-AGE | R : 60° | 25 - 50
25 - 50
25 - 50
25 - 50
MATURE | BA: | > 50
> 50
> 50
> 50
NNT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: MOISTURE: | 1 = >25 0 = NONE 1 = >25 0 = NONE 25 0 = NONE 25 25 25 25 25 25 25 25 | 2= 10cH
= 1= 0% < | N=N
DEP | < 10
< 10
< 10
< 10
ONE - R | D D = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 25 - 50
25 - 50
25 - 50
25 - 50
MATURE | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AN/ STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: MOISTURE: HOMOGENEOUS | 1 = >25
0 = NONE
BITION:
ALYSIS
35:
35:
55: | 2 100H
1 2 100H
1 100H
1 100H
2 100H | N=N
DEP
DEP | < 10 < 10 < 10 < 10 ONE - R YOUNG | D D = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 25 - 50
25 - 50
25 - 50
25 - 50
MATURE | BA: | > 50
> 50
> 50
> 50
NNT
OLD
GROWTH | | | 4 GRD. LAYER HY CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: HOMOGENEOUS COMMUNITYC | 1 = >25 0 = NONE BITION: BLYSIS BS: BS: BS: BS: BS: BS: BS: BS: BS: BS | PIONEER | DEP DEP | < 10 < 10 < 10 < 10 ONE - R YOUNG | D D = RARE | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 4= CVR > 609 25 - 50 25 - 50 25 - 50 IONAL A = A MATURE | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: | 1 = >25 1 = >2 | PIONEEF | DEP DEP DEP | < 10 < 10 < 10 < 10 ONE · R YOUNG TH TO MO TH OF ORG | TILES / GANICS | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 25 - 50
25 - 50
25 - 50
25 - 50
MATURE | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS AND STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: HOMOGENEOUS COMMUNITY CL | 1 = >25 1
= >25 1 = >2 | PIONEEF | DEP DEP DEP | < 10 < 10 < 10 < 10 ONE - R YOUNG | TILES / GANICS | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 25 - 50
25 - 50
25 - 50
25 - 50
MATURE | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: SOIL ANALYSI TEXTURE: HOMOGENEOUS COMMUNITY CL COMMUNITY SE | 1 = >25 0 = NONE BITION: BIT | PIONEER PIONEER PIONEER PIONEER PICATIO Fores Decid | DEP | < 10 < 10 < 10 < 10 ONE · R YOUNG TH TO MO TH OF ORG | TILES / GANICS | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 25 - 50 25 - 50 25 - 50 25 - 50 MATURE CODE: CODE: CODE: | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | 4 GRD. LAYER HT CODES: CVR CODES STAND COMPOS SIZE CLASS ANA STANDING SNAC DEADFALL / LOC ABUNDANCE CODE COMM. AGE: HOMOGENEOUS COMMUNITY CL COMMUNITY SE ECOSITE: | 1 = >25 0 = NONE SITION: ALYSIS GS: GS: SS: SS: RIES: PE: | PIONEER PIONEER PIONEER PIONEER PICATIO Fores Decid | DEP | < 10 < 10 < 10 < 10 ONE · R YOUNG TH TO MO TH OF ORE TH TO BEE | TILES / GANICS | 10 - 24
10 - 24
10 - 24
0 = 0
AlD-AGE | R · 60° | 25 - 50 25 - 50 25 - 50 25 - 50 26 - 50 26 - 50 27 - 50 28 - 50 28 - 50 29 - 50 20 - 5 | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | ELC | SITE: T-Line | |-------|---------------------| | | POLYGON: Feature 29 | | PLANT | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | | LA | YER | 26 | COLL. | | | LA | YER | | 1 | |--------------------|---|-----|-----|----|-----------|---------------|--------|-------|---------|-------|---| | Stanformer (* 4 | 1 | 2 | 3 | 4 | COLL | SPECIES CODE | 1 | 2 | 3 | 4 | ı | | BETPAPY | R | Į. | ÷ | | | | | | | | | | QUEMACR | A | | | | | | \top | | | | | | POPTREM | Α | Ų | - l | - | | 3 | | | 3 | | | | ACESASA | 0 | | | 5 | | | | | | | | | | | 1 | | | | | | | | | ŀ | | | | - j | - | 15 | | | | 4 | , | = | ŀ | | CORFORA | | | 0 | | | | | | | | | | RHACATH | | | 0 | | | | | -1 | =4 | | • | | | | | | - | | | | - 1 | -3 | | | | | | | 5-1 | | | | | | | 1 | | | | | | | | remark : | | | | =// | - | | | A L | | | =g | | | | | | | | | | per per | | | 23 | | | | | | | | | | | Ш | | | | | | | | | | | | | | | - | | 4.1 | ==)++- | | = | _ | | | | | floor | | | _ | | | | | 1 | 1 | 27100 | | | | \prod | | | | | | | | 1 | | | | | | | _ | | PERSONAL PROPERTY. | | | | 9 | CONT | settentlicrop | | | | ile i | _ | | | | 1 | | 1 | Liame and | | | | | | | | | | | 4 | 1 | | inger engles | | 101 | | | _ | | | | 1 | 1 | | | | | | | I | _ | | | | 4 | | 19 | 71 | | | | | | _ | | 57 (1825) | | | | | | | | | T | T | | Stantec Consulting Ltd. 70-1 Southgate Drive Guelph, Ontario, Canada N1G 4P5 Tel: (519) 836-6050 Feature 37 ## Wildlife Habitat **Assessment** | Project Number | 61010646 | | Project Name: Samsung | | | | | | | |---|--|--|-----------------------------|---|--------------------------------|--|--|--|--| | Date / Time: | v. 4. 10 | L SALL AND THAT | Field Personr | nel: GAW | | | | | | | Weather
Conditions: | Temp: | Wind: | Cloud: | PPT:
light rain | PPT in last
24 hrs:
Rain | | | | | | Reptile Hibernacul
uried concrete or rock (
ock crevices or inactive | e.g. foundations, | reptile hiberr | acula features | S? ☐ Yes ☐ No | (if yes, unknown | | | | | | escribe details in Tab | ole 1). | | | | (if yes, unknown | | | | | | escribe details in Tab
Bat Hibernacula F
Does the site cont | ole 1).
<u>eatures</u> i.e. ka
ain potential I | rst topography, | abandoned mine | es or caves | | | | | | | Does the site control lescribe details in Tab
Bat Hibernacula Fooes the site control lescribe details in Tab | ole 1).
<u>eatures</u> i.e. ka
ain potential l
ole 1). | rst topography,
bat hibernac | abandoned mine | es or caves
□ Yes □ No (if y | | | | | | | escribe details in Tab
Bat Hibernacula F
Does the site cont | ole 1).
<u>eatures</u> i.e. ka
ain potential l
ole 1). | rst topography,
bat hibernac
pernacula fea | abandoned mineula features? | es or caves ☐ Yes ☐ No (if y d on site | | | | | | | escribe details in Tab
Bat Hibernacula F
Does the site cont
escribe details in Tab
Table 1: Potential | eatures i.e. ka ain potential l ble 1). bat/reptile hib | rst topography,
bat hibernac
pernacula fea | abandoned mineula features? | es or caves ☐ Yes ☐ No (if y d on site | Species observed usin | | | | | | escribe details in Tab
Bat Hibernacula F
Does the site cont
escribe details in Tab
Table 1: Potential | eatures i.e. ka ain potential l ble 1). bat/reptile hib | rst topography,
bat hibernac
pernacula fea | abandoned mineula features? | es or caves ☐ Yes ☐ No (if y d on site | Species observed usin | | | | | List species and type of observation: (TK = track, SC = scat, VO = vocalization, OB = observed, DP = distinctive parts, FE = feeding evidence, CA = carcass, FY = eggs, nest, HO = house/den, SI = other sign) | Birds | Mammals | Herps | Butterflies /
Dragonflies | Other | |------------|---------|-------|------------------------------|-------| | e. AMRO/VO | / | - / | - 7 | 1 | | / | | | | | | | | , | | | | Ÿ | | | | | | | | | | | ## Woodland Assessment-complete 1 assessment for each woodland Woodlot # (indicate on map) : Polygon () Approximate age of stand __midage___ Are large (i.e. >40cmDBH and >25m tall) trees present Yes No not seen from road If yes, approximate # present or % of stand ___ Location in stand (i.e throughout, in west side only, in FOD2-6 only etc..) Are snags present? Tyes No None seen from edge If yes provide characterization of number present, height and DBH of snags and indicate if they contain loose bark. Trees with cavities present? I No Rare Occasional Abundant Unknown Height ranges of Range of Tree Range of Cavity Cavity sizes DBH tree Heights (approx. diameter) Bat Mat Roost? None Seen. Presence of large stick nests (i.e. raptor nests)? Yes No None Seen If yes, UTM and describe tree type, height and position in tree, size of nest, species present Evidence of disturbance? (i.e logging, roads, paths, ATV use, trails) Yes No Unknown If yes, describe Seeps/ springs present? Yes No Unknown If yes, Seep/Spring # UTM Description Surrounding Habitat Vernal Pools Present? Yes No Unknown If yes, Size of pool Depth of water Presence of Presence of shrubs. Location (diameter) emergent/submergent logs at pond edge veg? | ELC | SITE: | | | | | | POLY | GON: (2) | | | |
--|---|-----------------------------------|---|---|---|---|---------|---|---|--|--| | COMMUNITY | SURVE | YOR(S): | | | DATE: | | | | UTME | | | | DESCRIPTION &
CLASSIFICATION | START | LL. | END | ē. | | | UTMZ | ri, | UTMN | | | | OLYGON DES | SCRIP | TION | | | | | | | | | | | SYSTEM | SUB | STRATI | | OGRAPHIC
EATURE | HI | STORY | PLA | NT FORM | CO | MMUNITY | | | TERRESTRIAL WETLAND AQUATIC | TLAND MINERAL SOIL | | - BO | CUSTRINE TERINE, TOMLAND RRACE LLEY SLOPE BLELAND LL. UPLAND FF | | CULTURAL SUI | | NIKTON BMERGED DATING-LVD. AMINOID RB HEN YOPHYTE CIDUOUS | PON
RIVE
STR
STMAR
SWA | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG BARREN | | | SITE | | | . □ TAI | US
EVICE / CAVE | C | OVER | | NIFEROUS | I MEA | DOW | | | OPEN WATER SHALLOW WATER SURFICIAL DEP. BEOROCK | 1,20 | SYN. | □ RO | CKLAND
ACH / BAR
ND DUNE | OPE SHR | UB | | | PRA THIC SAV. WOX FOR | EXET
ANNAH
DOLAND
EST
NTATION | | | TAND DESCR | HT | N:
CVR | /22 | SPECIES | | | | ASING DO | | | | | CANOPY | 4 | 4 | reed | Canar | | | >> T | | | 10AL 10) | | | | <u> </u> | 4 | 1/2 | CONTRACT | 13 | .000 | | 11.414 | Ų. | To E | | | SUB-CANOPY | | | | | | | 47 | | | | | | SUB-CANOPY | 5 | - ' | - 11 | = 101 | | | | | | | | | UNDERSTOREY | ь
7 | 4 | " | | | | | i sa lii
Lii kaa | | 2 (45) | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES | 5
7
1=>251
0= NONE | 1 2 10<
1 2 0% | //
HT:25 m | 3 = 2 <ht<10 m<br="">% 2= 10 < C\</ht<10> | | | | | 1 3 | ≠HT<0.2 m | | | UNDERSTOREY GRD. LAYER CODES: /R CODES TAND COMPOS | 5
7
1=>25 r
0= NONE | 1
1
1 2 = 10<
1 = 0% | //
HT:25 m | % 2= 10 < CV | | 3= 25 < CV | | 4= CVR > 609 | | | | | UNDERSTOREY GRD. LAYER CODES: /R CODES TAND COMPOS | 5
7
1=>25 r
0= NONE | 1
1
1 2 = 10<
1 = 0% | //
HT:25 m | | | | | | 1 3 | = HT<0.2 m | | | UNDERSTOREY GRD. LAYER CODES: R CODES TAND COMPOS ZE CLASS ANA | 1=>251
0= NONE
SITION: | 1
1
1 2 = 10<
1 = 0% | //
HT:25 m | % 2= 10 < CV | | 3= 25 < CV | | 4= CVR > 609 | 1 3 | | | | UNDERSTOREY GRD. LAYER FCODES: /R CODES TAND COMPOS ZE CLASS ANA TANDING SNAC | 1 = >25 f
0 = NONE
SITION:
ALYSIS
35: | 1
1
1 2 = 10<
1 = 0% | //
HT:25 m | < 10 < 10 < 10 < 10 < 10 | | 10 - 24
10 - 24
10 - 24 | R < 80% | 4= CVR > 609
25 - 50
25 - 50
25 - 50 | 1 3 | > 50
> 50
> 50 | | | UNDERSTOREY GRD. LAYER T CODES: | 1 = >25 f
0 = NONE
SITION:
ALYSIS
35: | 2 10% · | //
HT:25 m
< CVR \ 10 | < 10
< 10
< 10
< 10
ONE · R: | R , 25% | 10 - 24
10 - 24
10 - 24 | | 4= CVR > 609
25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50 | | | UNDERSTOREY GRD. LAYER TOODES: VR CODES TAND COMPOS TAND COMPOS TANDING SNAC DEADFALL / LOC BUNDANCE CODE COMM. AGE: | T T T T T T T T T T T T T T T T T T T | 2 10% · | // HT. 25 m CVR \ 10 | < 10
< 10
< 10
< 10
ONE · R: | R . 25% | 10 - 24
10 - 24
10 - 24
0 = 0 | CCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50 | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNAC EADFALL / LOC BUNDANGE CODE OMM. AGE: COIL ANALYS! | T T T T T T T T T T T T T T T T T T T | 2 10% · | // HT. 25 m C CVR \ 10 | < 10 < 10 < 10 ONE · R: | R , 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | R < 80% | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNAC EADFALL / LOC BUNDANGE CODE OMM. AGE: OIL ANALYS! EXTURE: | b 7 1=>251 0=NONE SITION: ALYSIS SS: SS: | 2 = 10c
1 = 0% · | N = N' | < 10 < 10 < 10 < 10 ONE · R: OUNG | R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
NT
OLD
GROWTH | | | UNDERSTOREY GRD. LAYER T CODES TAND COMPOS IZE CLASS ANA TANDING SNACE BUNDANCE CODE OMM. AGE: OIL ANALYSI EXTURE: OMOGENEOUS | b 7 1=>251 0=NONE SITION: SITION: SIS: SIS: SIS: SIS: SIS: SIS: SIS: SI | 1 | N = N DEP | < 10 < 10 < 10 ONE · R: | R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
> 50
NT
OLD
GROWTH | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNAC EADFALL / LOC BUNDANCE CODE OMM. AGE: OIL ANALYS! EXTURE: OMOGENEOUS OMMUNITYC | I SETTION: 1 = >25 f 0 = NONE SITION: ALYSIS 35: 35: 35: 4 VAI LASSI | PIONEE | // HT: 25 m < CVR \ 10 N = N R DEP DEP DEP ION: | < 10 < 10 < 10 < 10 ONE · R: OUNG | R 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
NAL A = A | BA: | > 50
> 50
> 50
NT
OLD
GROWTH | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNACE BUNDANCE CODE OMM. AGE: OIL ANALYSI EXTURE: OMOGENEOUS OMMUNITYC OMMUNITY CL | b 7 1=>251 6=NONE SS: SS: SS: LASSI ASS: J VAI | PIONEE | N=N' DEP' DEP' DEP' DEP' | < 10 < 10 < 10 < 10 ONE RECORD | R , 25% | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50
25 - 50
25 - 50
25 - 50
NAL A = A
MATURE | BA: | > 50
> 50
> 50
> 50
INT
OLD
GROWTH
(cm) | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNACE EADFALL / LOC BUNDANGE CODE OMM. AGE: OIL ANALYS! EXTURE: OISTURE: OMOGENEOUS OMMUNITY CL OMMUNITY SEI | b 7 1=>251 0=NONE ITTION: ILYSIS SS: SS: SS: LASSI ASS: ASS: ASS: ASS: ASS: ASS: ASS: | PIONEE PIONEE PIONEE Mars Mea | N=N' N=N' N=N' N=N' N=N' N=N' N=N' N=N' | < 10 < 10 < 10 < 10 ONE REPORTED TO MOTER TO BEE | R . 25% RARE RARE FILES BANICS BROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE | CCASIC | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: // | BA: | > 50
> 50
> 50
NNT
OLD
GROWTH
(cm) | | | UNDERSTOREY GRD. LAYER T CODES: VR CODES TAND COMPOS IZE CLASS ANA TANDING SNACE EADFALL / LOC BUNDANCE CODE OMM. AGE: OIL ANALYSI EXTURE: OMOGENEOUS COMMUNITY CL OMMUNITY SEI COSITE: M(V) | b 7 1=>251 6=NONE SITION: SS: SS: SS: LASSI ASS: PERS: PERS: | PIONEE PIONEE PIONEE Mean Mea | DEP DEP DON: | < 10 < 10 < 10 < 10 ONE REPORTED TO MOTER TO MOTER TO BEET MAYS MAYS MAYS | FRARE FILES BANICS BROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | g = | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: // | BA: BA: BA: BUNDA G= MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | > 50
> 50
> 50
> 50
SROWTH
(cm) | | | UNDERSTOREY I GRD. LAYER IT CODES: VYR CODES TAND COMPOS TAND COMPOS TANDING SNAC TANDING SNAC TEADFALL / LOC BUNDANCE CODE COMM. AGE: | b 7 1=>251 6=NONE SITION: SS: SS: SS: LASSI ASS: PERS: PERS: | PIONEE PIONEE PIONEE Mean Mea | DEP DEP DON: | < 10 < 10 < 10 < 10 ONE REPORTED TO MOTER TO MOTER TO BEET MAYS MAYS MAYS | FRARE FILES BANICS BROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | g = | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: / CODE: / | BA: BA: BA: BUNDA G= MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | > 50
> 50
> 50
NNT
OLD
GROWTH
(cm) | | | UNDERSTOREY GRD. LAYER TOODES: TAND COMPOS STAND COMPOS STAND COMPOS STANDING SNAC BUNDANCE CODE COMM. AGE: COMMUNITY CL COMMUNITY SEI COSITE: M() | b 7 1=>251 6=NONE SS: SS: SS: LASSI AASS: PE: VY G | PIONEE PIONEE PIONEE Mean Mea | DEP DEP DON: | < 10 < 10 < 10 < 10 ONE REPORTED TO MOTER TO MOTER TO BEET MAYS MAYS MAYS | FRARE FILES BANICS BROCK | 10 - 24
10 - 24
10 - 24
0 = 0
MID-AGE
/ GLEY
S: | g = | 25 - 50 25 - 50 25 - 50 NAL A = A MATURE CODE: // CODE: // | BA: BA: BA: BUNDA G= MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | > 50
> 50
> 50
> 50
SROWTH
(cm) | | | ELC | SITE: T-Line | |---------|---------------------| | PLANT | POLYGON: Feature 37 | | SPECIES | DATE: | | LIST | SURVEYOR(S): | | SPECIES CODE | LAYER | | | 4 | COLL | SPECIES CODE | ķ., | LAYER | | | |
--|------------|---------|----|---|-------|----------------|-----------|-------|---|---|-----| | STATE OF STA | 1 | 2 | 3 | 4 | COLL. | SPECIES CODE | 1 | 2 | 3 | 4 | COL | | reed canary | D | D | D | D | | | | | | | | | blue vervain | 0 | Г | | | | | | | - | | | | TYPANGU | Α | | | | | <u> </u> | - | | | | | | | | | | | ::0 | | Ē | | | | | | | | | | | | | + | | | \perp | _ | | | | | | | | | + | | | | | - | - | | | . <u> </u> | _ | | | | | | | | | | | | | | 4= | | - | | | \perp | | | | | | | | | | | | | Н | + | + | + | | | | | | - | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | + | + | - | | | | | | | | | | | + | + | | | | | Ē | | | | | | | | | | | | | | - | | | | | | | | | | | =V ==== 3(251M) | + | + | 10 | | 1 | Mar 150 Elicon | | + | + | + | | | | - 1
190 | 77 3 | | | | | THE STATE | | + | + | ··· | | | 1 | \prod | | | | | | | | | | | | | + | + | - | | | | 1 | 1 | | | | | | | | | | | | | | | | | | ELC | SITE: | 61010 | 1646 | 2 | | | POLYG | ·UN.(1) | | | | |---|--|--|--|---------------------|--
--|--|--------------------------------|--|---|--|-----------------| | c | CLU | SURVEY | OR(S): | SAINI | | DATE: Nov. | | 1.10 | | UTME: | 141 | | | DE | SCRIPTION & | START: | | END | | <u> </u> | | UTMZ: | | UTMN: | | 2 1 | | _ | LYGON DES | CRIDI | NON | | | 11 | | | | | | | | 0 | SYSTEM | | TRATE | | GRAPHIC
ATURE | HISTO | RY | PLA | T FORM | CON | MUNITY | | | WETLAND AQUATIC | | ☐ PARE | RAL SOIL | RIVE | | PNATURAL ☐ CULTURA | | SUBI | EN
OPHYTE
IDUOUS | LAKE POND RIVER STREAM MARSH SWAMP FEN BOG BARREN | | | | | | CARI | B. BEDRK. | | VICE / CAVE | covi | ER | CON | IIFEROUS
ED | ☐ MEAI | DOW
RIE | | | S | PEN WATER
HALLOW WATER
URFICIAL DEP.
EDROCK | | 14.6 | ROC | KLAND
ACH / BAR
ID DUNE | OPEN SHRUB | | | | THICKET SAVANNAH WOODLAND FOREST PLANTATION | | | | ST | AND DESCR | RIPTIO | N: | | 111111111111111111111111111111111111111 | | 144.4 | | A CINIC DO | ngini a hi | CE | 7 | | | LAYER | нт | CVR | (>> A | SPECIES
NUCH GREA | IN ORDER | > GRE | ECRE/ | HAN; = AB | OUT EQ | UAL TO) | e ^{lo} | | 1 | CANOPY | 2 | 3-4 | | MACR | # | 1 51 | | 3 1227144 | | | | | 2 | SUB-CANOPY | 3 | 4 | 11 | POPBA | ALS UI | LMA | MER | (III = 30 | | = 7/ | 14 | | | UNDERSTOREY | | 4 | CORS |) | , , , | | H. | 8 2 | 1 | - 1 | 1. | | 4 | GRD. LAYER | 1 - | 1 | WK. | 10- | | | Charles . | | TOP I | | | | iT
CV | CODES:
R CODES | 100 | E 1= 0% < | HT 25 m | 1 a 2ch(T, 10) | No Acce
m 4 = 1 < HT < 2
VR < 25% 3= | m 5 = 0 |),5 <ht;1
R : 60%</ht;1
 | m 6 = 0.2 <h
4= CVR > 80</h
 | 7:0.5 m 7
%
BA: | ' = HT<0.2 m | | | HT
CV
ST | CODES:
R CODES
AND COMPO | 1 = >25
0= NONI
SITION: | m 2 = 10 <h
E 1= 0% <</h
 | CVR < 10 | 3 = 2 <ht 10="" \="" <br="">% 2= 10 < C</ht> | m 4 = 1 <ht<2
VR < 25% 3=</ht<2
 | m 5 = 0 | 0.5 <ht.1
R : 60%</ht.1
 | m 6 = 0.2 <h
4= CVR > 80
25 - 50</h
 | <u> </u> | > 50 | | | ST | CODES:
R CODES
AND COMPO
ZE CLASS AN | 1 = >25
0= NONI
SITION: | m 2 = 10 <h
E 1= 0% <</h
 | HT 25 m
CVR < 10 | 3 = 2 <ht 10="" \="" <br="">% 2= 10 < C
< 10</ht> | # 4 = 1 <ht 25%="" 3="</td" <="" <2="" vr=""><td>m 5 = 0
25 < CV</td><td>R : 60%</td><td>25 - 50</td><td><u> </u></td><td></td><td>No.</td></ht> | m 5 = 0
25 < CV | R : 60% | 25 - 50 | <u> </u> | | No. | | ST | CODES:
R CODES AND COMPO ZE CLASS AN ANDING SNA | 1 = >25
0 = NONI
SITION:
ALYSIS | m 2 = 10 <h
E 1= 0% <</h
 | CVR < 10 | 3 = 2 <ht 10="" <="" <br="">% 2= 10 < 0
< 10
< 10</ht> | A 1 | 0 - 24 | R : 60% | 4= CVR > 80 | <u> </u> | > 50 | No Acces | | ST
ST
ST | CODES:
R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO | 1 = >25
0 = NONI
SITION:
ALYSIS
AGS: | m 2 = 10 <h
E 1= 0% <</h
 | CVR < 10 | 3 = 2 <ht<101
% 2= 10 < C
< 10
< 10
< 10</ht<101
 | A 1 | 0 - 24
0 - 24
0 - 24 | R : 60% | 25 - 50
25 - 50
25 - 50 | <u> </u> | > 50
> 50
> 50 | -/- | | ST ST | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD | 1 = >25
0 = NONI
SITION:
ALYSIS
AGS: | m 2 = 10 <h
E 1= 0% <</h
 | D N = N | 3 = 2 <ht<101
% 2= 10 < C
< 10
< 10
< 10</ht<101
 | # 4 = 1 < HT < 2
VR < 25% 3 = A 1 1 1 | 0 - 24
0 - 24
0 - 24
0 - 0 = 0 | R 60% | 25 - 50
25 - 50
25 - 50 | BA: | > 50
> 50
> 50
> 50
ANT | -/- | | ST ST | CODES:
R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO | 1 = >25
0 = NONI
SITION:
ALYSIS
AGS: | 2 = 10<-
m 2 = 10<-
E 1 = 0% < | D N = N | 3 = 2 <hf 0="" 10="" 10<="" <="" td=""><td>A 1 A 1 A 1 A 1</td><td>0 - 24
0 - 24
0 - 24
0 - 0 = 0</td><td>R 60%</td><td>25 - 50
25 - 50
25 - 50
ONAL A =</td><td>BA:</td><td>> 50
> 50
> 50
> 50</td><td>-/-</td></hf> | A 1 A 1 A 1 A 1 | 0 - 24
0 - 24
0 - 24
0 - 0 = 0 | R 60% | 25 - 50
25 - 50
25 - 50
ONAL A = | BA: | > 50
> 50
> 50
> 50 | -/- | | ST DE | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: | 1 = >25
0= NOM
SITION:
ALYSIS
GS:
DGS: | 2 = 10<-
m 2 = 10<-
E 1 = 0% < | D N = N | 3 = 2 <ht.101
% 2= 10 < C
< 10
< 10
< 10
ione · F</ht.101
 | A 1 A 1-1-HT-2 VR < 25% 3= A 1 1 1 1 1 R = RARE | 0 - 24
0 - 24
0 - 24
0 - 24 | R SO% | 25 - 50
25 - 50
25 - 50
ONAL A = | BA: | > 50
> 50
> 50
> 50
ANT | -/- | | ST ST OF ST | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: | 1 = >25
0= NOM
SITION:
ALYSIS
GS:
DGS: | 2 = 10<-
m 2 = 10<-
E 1 = 0% < | D N = N | 3=2chT(10) 4 2=10 < C < 10 < 10 < 10 ione - F YOUNG | A 1 A 1-1-HT-2 VR < 25% 3= A 1-1 1 1 1 = RARE | 0 - 24
0 - 24
0 - 24
0 - 24 | R 60% | 25 - 50
25 - 50
25 - 50
ONAL A = | BA: | > 50
> 50
> 50
> 50
ANT | -/- | | ST SIZE | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OISTURE: | 1 = >25
0 = NONI
SITION:
ALYSIS
GS:
GS:
DES: | m 2=10-c E 1=0% < | D N = N DEP DEP | 3 = 2 chT (10) 4 10 < 10 4 10 4 10 5 10 7 1 | A 1 A 1- C 25% 3= A 1- C 3- A 1- 1 | 0 - 24
0 - 24
0 - 24
0 - 24 | R SO% | 25 - 50
25 - 50
25 - 50
ONAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | -/- | | ST ST DE | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOL | 1 = >25
0 = NONI
SITION:
SITION:
ALYSIS
GS:
DGS:
DES: | # 2=10-K | DEP DEF | 3=2chT(10) 4 2=10 < C < 10 < 10 < 10 ione - F YOUNG | A 1 A 1- C 25% 3= A 1- C 3- A 1- 1 | 0 - 24
0 - 24
0 - 24
0 - 24 | R SO% | 25 - 50
25 - 50
25 - 50
ONAL A = | BA: | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH | -/- | | ST SIZE STE | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA
EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OISTURE: | 1=>25
0= NONI
SITION:
SITION:
GS:
GS:
GS:
GS:
UES: | PIONEE | DEP DEF | 3 = 2 chT (10) 4 10 < 10 4 10 4 10 5 10 7 1 | A 1 A 1- C 25% 3= A 1- C 3- A 1- 1 | 0 - 24
0 - 24
0 - 24
0 - 24 | R SO% | 25 - 50
25 - 50
25 - 50
ONAL A =
MATURE | BA: ABUND G= SW | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm) | -/- | | ST S | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: DIL ANALYS EXTURE: DMGGENEOL OMMUNITY | 1=>25
0= NONI
SITION:
ALYSIS
IGS:
IGS:
IGS:
IGS:
IGS:
IGS:
IGS:
I | PIONEE | DEP DEF | 3 = 2 chT (10) 4 10 < 10 4 10 4 10 10 ONE - F YOUNG TH TO MO TH TO BE | A 1 A 1- C 25% 3= A 1- C 3- A 1- 1 | 0 - 24
0 - 24
0 - 24
0 - 24 | R SO% | 25 - 50
25 - 50
25 - 50
DNAL A =
MATURE | BA: ABUND G= SW SW | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | -/- | | ST SI ST SI | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOU OMMUNITY C OMMUNITY S | 1=>25
0= NONI
SITION:
SITION:
GS:
GS:
DES:
DES:
LASS:
LASS:
ERIES: | PIONEE | DEP DEF DEF TON: | 3 = 2 chT (10) 4 10 < 10 4 10 4 10 10 ONE - F YOUNG TH TO MO TH TO BE | A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 | 0 - 24
0 - 24
0 - 24
0 - 24 | R 60% | 25 - 50
25 - 50
25 - 50
ONAL A =
MATURE | BA: ABUND G= SW SW | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | -/- | | ST ST ST ST MH C C C E | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOU OMMUNITY C OMMUNITY S | DES: | PIONEE PIONEE ARIABLE EIFICAT SWA Decid | DEP DEF DEF TON: | 3=2chT(10) 4 2=10 < C <10 <10 <10 ione · F YOUNG TH TO MC TH TO BE | A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 | 0 - 24
0 - 24
0 - 25
0 - 24
0 - 24
0 - 24 | R 60% | 25 - 50
25 - 50
25 - 50
DNAL A =
MATURE | BA: ABUND G= SW SW | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | -/- | | ST ST ST ST MH C C C E | CODES: R CODES R CODES AND COMPO ZE CLASS AN EADFALL / LO IUNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOL OMMUNITY C OMMUNITY C OMMUNITY S COSITE: COSITE: COSITE: COSITE: COSITE: CODES COD | 1=>25
0= NONI
SITION:
GS:
GS:
GS:
GS:
CES:
CLASS:
LASS:
ERIES: | PIONEE PIONEE PIONEE ARIABLE Decin | DEP DEF TON: | 3=2chT(10) 4 2=10 < C <10 <10 <10 ione · F YOUNG PTH TO MC TH TO BE | A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 | 0 - 24
0 - 24
0 - 25
0 - 24
0 - 24
0 - 24 | R 60% | 25 - 50 25 - 50 25 - 50 DNAL A = MATURE CODE: CODE: | BA: ABUND G= SW SW | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | -/- | | ST S | CODES: R CODES AND COMPO ZE CLASS AN ANDING SNA EADFALL / LO UNDANCE COD DMM. AGE: OIL ANALYS EXTURE: OMOGENEOL OMMUNITY C OMMUNITY S COSITE: | DES: CLASS: LASS: LASS: ERIES: SION | PIONEE PIONEE PIONEE ARIABLE Decin | DEP DEF TON: | 3=2chT(10) 4 2=10 < C <10 <10 <10 ione · F YOUNG PTH TO MC TH TO BE | A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 | 0 - 24
0 - 24
0 - 25
0 - 24
0 - 24
0 - 24 | R 60% | 25 - 50 25 - 50 25 - 50 DNAL A = MATURE CODE: CODE: CODE: | BA: ABUND G= SW SW | > 50
> 50
> 50
> 50
ANT
OLD
GROWTH
(cm)
(cm) | 1 | | ELC | SITE: Transmission Line | _ | |------------------|-------------------------|---| | | POLYGON: Feature 37 | | | PLANT
SPECIES | DATE: | _ | | LIST | SURVEYOR(S): | _ | | | LAYER | | | Ant. | COLL. | A SON THE P | LAYER | | | | COLL | | |----------------------------|---------|-------|-----|------|---|---|---------|------|-----|-----|-------|--| | SPECIES CODE | 1 | | 3 | | COLL. | SPECIES CODE | 1 | 2 | 3 | 4 | COLL | | | QUEMACR | A | | Н | | | | | | | | | | | POPBALS | 0 | | | · H | H-20-00 | | | | | | | | | ULMAMER | A | | | | | | | | A | | | | | | = | 11 | -1 | - | | | | | | | | 11-19 | | | | | | | | | | | | H | + | = | | | | | | | | | CORSTOL | | | A | 11 | | | | | | | | | | | 1 | | | | | | | | | | | | | | | - 11 | | | | | | | | | | | | | \perp | | | | | | \perp | | | | | | | | | | 100 | | 0===111 | | | | | | | | | | | | | =- | | N-0 - 2 | 1 | _ | = | | | | | | | | | | | | _ | _ | | | | | | | | _ | 122 | - | 4, | | | | | | | | | | _ | | | =_ | 3500 | ======================================= | 1 | L | | | | | | | | | _ | | | (S | 1 | _ | | | | | | 31358 | | | | _ | COST | SIA IISEW EX | 4 | | | | T EN | | | | | _ | L | 1 | remails | | 1 3 | | | | | | | Publication of Publication | - 50 | - | _ | 2 | Vg = 21 | | | 2.87 | | Bii | | | | | 1 | L | 1 | - 1 | | | +- | _ | _ | | | | | | | | | 15 | 2/3/05 | | - | | _ | _ | | | | ps:No; | | laim) | | | 211602-1111 | | | | - 0 | | =110. | | Page of