Stantec

GRAND RENEWABLE ENERGY PARKPROJECT DESCRIPTION REPORT

Attachment C

Turbine Specifications

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Report of acoustical emissions of a Siemens wind turbine generator system of the type 2.3 MW Mk II near Høvsøre in Denmark

Date(s) of measurements: 2005-08-11 to 13

September 2005

Report WT 4498/05

Laboratory accredited by DAP Deutsches Akkreditierungssystem Prüfwesen according to DIN EN ISO/IEC 17025. This accreditation is valid for the test and measurement procedures given in the certificate.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Report of acoustical emissions of a Siemens wind turbine generator system of the type 2.3 MW Mk II near Høvsøre in Denmark

Report WT 4498/05

Site or measuring place:	Høvsøre, Denma	ark in the region of Ring	gkøbing
Customer:	Siemens Wind P Borupvej 16 7330 Brande, De		
Contractor:	Sommerdeich 14	er-Wilhelm-Koog Gmbl b lhelm-Koog, Germany	H
Date of order:	2005-08-23	Order No.:	4025 05 03069 64
Engineer:]	[Checked:
DiplIng. A. Jensen	, ≤	}	DiplIng. J. Neubelt Acoustics Group Leader

Kaiser-Wilhelm-Koog, 2005-09-08

Table of contents

1		Scope	4
2		Method	4
	2.1	Measurement procedures	4
	2.2	Measurement object	4
	2.3	Course of the measurements	4
	2.4	Measuring equipment	5
	2.5	Position of microphone	5
3		Measurement results	5
	3.1	Determination of directivity	5
	3.2	Sound pressure level	6
	3.3	Sound power level of the turbine	7
	3.4	Tonal and frequency analyses	7
	3.5	3rd octave analysis	8
	3.6	Uncertainties	9
		1 Sound power level 2 One-third octave band spectra	
		3 Tonality	
4		Summary	10
5		List of employed symbols and abbreviations	12
6		References	13
7		Annex	13
	Ann	ex 1: Measuring equipment used	14
	Ann	ex 2.1a: 2^{nd} order regression of L_{Aeq} and L_n against standardised wind speed	15
	Ann	ex 2.1b: Higher order regression of L_{Aeq} and L_n against standardised wind speed	16
	Ann	ex 2.2: Summary of analysis input parameters and results	17
	Ann	ex 2.3: Plot of L _{WA} against standardised wind speed	18
	Ann	ex 2.4: Plot of L _{Aeq} and L _n against measured wind speed	19
	Ann	ex 2.5: Plot of L _{Aeq} against power	. 20
	Ann	ex 2.6: Plot of rotor speed against power	21
	Ann	ex 2.7: Time plot of measurement	22
	Ann	ex 3.1a: Overview spectra 1-6 of turbine noise at a wind speed of 6 m/s	. 23
	Ann	ex 3.1b: Overview spectra 7-12 of turbine noise at a wind speed of 6 m/s	. 24
	Ann	ex 3.1c: Analysis of tonality of turbine noise at a wind speed of 6 m/s	. 25
	Ann	ex 3.2a: Overview spectra 1-6 of turbine noise at a wind speed of 7 m/s	. 26

Page 3 / 47

Annex 3.2b: Overview spectra 7-12 of turbine noise at a wind speed of 7 m/s	27
Annex 3.2c: Analysis of tonality of turbine noise at a wind speed of 7 m/s	28
Annex 3.3a: Overview spectra 1-6 of turbine noise at a wind speed of 8 m/s	29
Annex 3.3b: Overview spectra 7-12 of turbine noise at a wind speed of 8 m/s	30
Annex 3.3c: Analysis of tonality of turbine noise at a wind speed of 8 m/s	31
Annex 3.4a: Overview spectra 1-6 of turbine noise at a wind speed of 9 m/s	32
Annex 3.4b: Overview spectra 7-12 of turbine noise at a wind speed of 9 m/s	33
Annex 3.4c: Analysis of tonality of turbine noise at a wind speed of 9 m/s	34
Annex 3.5a: Overview spectra 1-6 of turbine noise at a wind speed of 10 m/s	35
Annex 3.5b: Overview spectra 7-12 of turbine noise at a wind speed of 10 m/s	36
Annex 3.5c: Analysis of tonality of turbine noise at a wind speed of 10 m/s	37
Annex 4.1: A-weighted sound pressure 1/3-octave spectrum at 6 m/s	38
Annex 4.2: A-weighted sound pressure 1/3-octave spectrum at 7 m/s	39
Annex 4.3: A-weighted sound pressure 1/3-octave spectrum at 8 m/s	40
Annex 4.4: A-weighted sound pressure 1/3-octave spectrum at 9 m/s	41
Annex 4.5: A-weighted sound pressure 1/3-octave spectrum at 10 m/s	42
Annex 5: Photos	43
Annex 6: Power curve used in the analysis	45
Annex 7a: Manufacturer's certificate, page 1/2	46
Annex 7b: Manufacturer's certificate, page 2	47

1 Scope

The order from Siemens Wind Power A/S dated 2005-08-23 required WINDTEST Kaiser-Wilhelm-Koog GmbH (WINDTEST) to carry out acoustic noise measurements on the Siemens wind turbine generator system (WTGS or 'turbine') 2.3 MW Mk II of hub height 80 m near Høvsøre, in the region of Ringkøbing in Denmark. From this, the sound power level, relevant for noise propagation calculations, of the noise emitted from the turbine at different wind speeds, and frequency spectra of the same, was also to be determined.

The results given in this report relate only to this WTGS.

2 Method

2.1 Measurement procedures

All measurements and analysis described in this report were done in accordance with the IEC 61400-11: Wind turbine generator systems – Part 11: Acoustic noise measurement techniques, Ed. 2 [IEC 61400-11] using Method 1 as outlined in 7.3.1.1 "Method 1: determination of the wind speed from the electric output and the power curve". In this report the sound power level and the tonality are given in the range of wind speeds from 6 to 10 $^{\text{m}}$ /s at a height of 10 m.

Note: A calculated power curve for the turbine was provided by the customer for purposes of converting the measured turbine power output into the standardised wind speed. This power curve is given in the Annex.

2.2 Measurement object

Table 1 shows the characteristics of the measured WTGS. The remaining characteristics can be found in the manufacturer's certificate included in the Annex.

Table 1: Characteristics of the measured WTGS

parameter	Value
manufacturer	Siemens Wind Power A/S
type	2.3 MW Mk II
WTGS No.	2300439
site	Høvsøre, Denmark
hub-height above ground	80 m
rotor diameter	92,4 m
distance middle of tower to middle of blade flange	3,5 m
power control (pitch/stall)	pitch

2.3 Course of the measurements

The total measurement period lasted from 2005-08-12 15:00 h until 2005-08-13 20:00 h. During this time the measured wind speed ranged from 5,5 to 12 m/s at a height of 10 m. The real

electrical power output of the turbine ranged between 300 and 2300 kW. The turbine was running continuously during the operating noise measurements.

The sound pressure level was recorded with a microphone on an acoustically hard board. The real electrical power output and the wind speed at a height of 10 m, taken upwind of the turbine in clear air, were also recorded. Time periods, where there were intermittent background noise of a significant nature, e.g. passing cars, planes flying over, rain etc., were marked accordingly during the measurements, and were omitted in the later evaluation. If there were random and reoccurring disturbances, which could not be marked during the measurement, a later state correction by means of a comparison with the DAT-recording was done.

The wind turbine generator system is sited in farmland. The surface roughness length for this measurement is assumed to be 0.05 m. The microphone position was chosen to minimise the effect of buildings, trees or bushes in the surrounding area of the wind turbine generator system, which might have had an influence on the measurement results. The conditions comply with free field behaviour over a reflecting plane.

During the noise measurements the meteorological conditions given in Table 2 were prevailing.

Table 2: Prevailing meteorological conditions during the measurements

barometric pressure at 2 m height above ground [hPa]	1001 - 1006
air temperature at 2 m height above ground [°C]	14 - 18
prevailing wind direction	WNW
range of wind direction	280 - 330
weather conditions	cloudy and dry
Turbulence intensity at 10 m height above ground [%]	14,0

2.4 Measuring equipment

The measuring equipment used is listed in the Annex. This equipment is tested regularly according to [IEC 61400-11] to ensure a high degree of measurement accuracy as well as security of data. The complete acoustic measurement system was checked before and after the measurements using an acoustic calibrator (B&K 4231).

2.5 Position of microphone

The microphone was placed according to [IEC 61400-11]. The distance from the turbine to the reference measuring point, R_0 = 112 m, was chosen taking local circumstances into account. The height of the microphone with respect to the bottom of the turbine foundation was 0 m.

3 Measurement results

3.1 Determination of directivity

As no significant directivity was ascertained the reference measurement position was chosen to be directly downwind of the turbine. This ensured worst case sound propagation conditions were taken into account.

3.2 Sound pressure level

The microphone converts the sound pressure into a continuous analogue signal which is then fed to a sound level meter. The resulting dB value, L_{Aeq} , together with the status, the wind speed at a height of 10 m, WS, and the real power output of the turbine, P_{w} , all recorded by the measurement system, is plotted against time in a graph given in the Annex. Here it can be seen at which points in time the turbine is switched on and off and provides an overview of the background noise in relation to the operating noise recorded by the measurement system over the whole period of the measurement. As can be seen, data was captured continuously throughout the whole measurement period. Non-normal background noises occurring in the measurement period, e.g. from aircraft or traffic, were marked during data acquisition to enable their easy omission in the evaluation to follow. The state signal is used to differentiate between periods when the turbine is running and when it is stopped. State = 3 depicts a running turbine, state = 0.5 depicts a stopped turbine, and state = 0 marks the data to be omitted in the evaluation.

The noise produced by the turbine alone $L_{\text{Aeq.c}}$ at wind speeds of 6, 7, 8, 9 and 10 m/s is then determined by converting the dB levels of background and in-service noise to intensities, performing a subtraction and converting back again to dB. In order to determine this, regression curves of the measured sound pressure level with the turbine both running and stopped, plotted with respect to the standardised wind speed at a height of 10 m are required. The wind speed measured during the background noise measurement is multiplied by the factor κ , which is defined as the following:

$$\kappa = \frac{V_s}{V_z}$$

where,

V_s is the standardised wind speed

 V_r is the measured wind speed.

For this measurement, $\kappa = 0.93$.

The results of this regression analysis are given in the Annex. All relevant sound pressure level values are given in the annex.

Remark: The data have been analysed using a fourth order regression because this is the best fitting approximation through all the relevant data points. In accordance with [IEC 61400-11] the data have also been analysed using a second order regression which is given in the annex only for information purposes. The sound levels resulting from the higher order regression have been applied in the third octave analysis.

3.3 Sound power level of the turbine

In accordance with [IEC 61400-11] the sound power level $L_{WA,k}$ of the turbine in dB is derived from the corrected sound pressure level $L_{Aeq,c,k}$, at wind speeds between 6 and 10 m/s at a height of 10 m, using the following formula:

$$L_{WA,k} = L_{Aeq,c,k} - 6 + 10 \cdot \lg \left(\frac{4 \cdot \pi \cdot R_1^2}{S_0} \right)$$

where, 6 dB is the correction due to the doubled sound pressure sensed by the microphone caused by coherent interference at the acoustically hard board.

$$10 \cdot \lg \left(\frac{4 \cdot \pi \cdot R_1^2}{S_0} \right)$$
 = the ratio in dB of the surface area of a sphere having the radius R_1

to the reference surface area of S_0

where,

$$S_0 = 1 \text{ m}^2$$

$$R_1 = \sqrt{(R_0 + d)^2 + (H - h_A)^2}$$

 R_0 = distance between tower centre and microphone position

d = distance between tower centre and rotor flange middle point

H = hub-height above ground level

 h_A = height of microphone

The following results are given in the Annex:

- A graph showing regressions through all the measured wind turbine sound data L_{Aeq} and background noise data L_n.
- A plot of the background corrected normalised values of L_{WA} against the standardised wind speed.
- A plot of L_{Aeq} and L_n against measured wind speed.
- A plot of L_{Aeq} against power.
- A plot of rotor speed against power.
- A time plot of the measurement.

For the Siemens 2.3 MW Mk II in the present configuration the real power output and the apparent sound power levels are given in table 4.

3.4 Tonal and frequency analyses

In accordance with the technical guideline [IEC 61400-11] a tonal analysis has to be carried out. The frequency spectrum of the noise, which is measured on the acoustically hard board, is determined on the basis of a narrow band analysis by means of the FFT-analyser B&K 2144. This analysis was performed after the measurements using the audio signal recorded on a DAT-recorder.

The results of the tonal analysis of the Siemens 2.3 MW Mk II according to [IEC 61400-11] are given in table 4.

3.5 3rd octave analysis

The A-weighted sound spectra at all the integer wind speeds are given in the Annex.

3.6 Uncertainties

3.6.1 Sound power level

The result of the sound power level measurement is subject to uncertainties which are due to the environment, meteorological conditions and the measurement system. For these measurements all the type B measurement uncertainty components as specified in the technical guideline [IEC 61400-11] are given in Table 3. For all of the type B uncertainties mentioned here, a rectangular distribution of possible values is assumed for simplicity with a range described as "±a". The standard deviation for such a distribution is:

$$U = \frac{a}{\sqrt{3}}$$

Table 3: Type B measurement uncertainty components

Component	Range [dB]	Uncertainty [dB]
Calibration, $U_{\it B1}$	±0,2	0,12
Chain of acoustic measurement instruments, $U_{\it B2}$	±0,4	0,23
Acoustically hard board, $U_{{\scriptscriptstyle B}3}$	±0,5	0,29
Distance measurement, $U_{\it B4}$	±0,1	0,06
Acoustic impedance of air, $U_{{\scriptscriptstyle B5}}$	±0,2	0,12
Meteorological variation (including turbulence), $U_{{\scriptscriptstyle B6}}$	±0,7	0,40
Wind speed derived from the power curve, $U_{{\scriptscriptstyle B7}}$	±0,3	0,17
Wind direction, $U_{{\scriptscriptstyle B8}}$	±0,5	0,29
$\sum_{i=1}^{8} U_{Bi}^{2}$		0,44

The error in the background correction $U_{{\it B9}}$ in dB has been calculated for each integer wind speed as follows:

$$U_{B9} = L_{Aeq,c,k} - \left[10 \cdot \log \left(10^{0,1 \cdot L_{Aeq,k}} - 10^{0,1(L_n + U_{HG})}\right)\right]$$

where $U_{\it HG}$ is the error in the background noise in dB defined as follows:

$$U_{\rm HG} = \sqrt{\frac{(y_n - y_{n,est})^2}{N_n - 2}}$$

where:

 y_n = measured sound pressure level of background noise in dB

 $y_{n,est}$ = estimated sound pressure level of background noise from the regression analysis

in dB

 N_n = number of background noise measurement values in the wind speed bin corresponding to the integer wind speed.

The combined measurement uncertainty $U_{\mathcal{C}}$ relating to the sound power level $L_{\mathcal{W}\!A,k}$ is calculated as follows:

$$U_C = \sqrt{U_A^2 + U_{B9}^2 + \sum_{i=1}^{8} U_{Bi}^2}$$

where:

$$U_A = \sqrt{\frac{\sum (y - y_{est})^2}{N - 2}}$$

where:

y = measured sound pressure level of total noise (operating plus background) in dB

 y_{est} = estimated sound pressure level of total noise from the regression analysis in dB

N = number of total noise measurement values in the wind speed bin corresponding to the integer wind speed.

All values for U_A , U_{B9} and U_C are given in the annex.

3.6.2 One-third octave band spectra

The uncertainty in the one-third octave band spectra is given in the Annex for all the third octave bands.

3.6.3 Tonality

The uncertainty in the tonality is given in the Annex for all the given tones.

4 Summary

As ordered by Siemens Wind Power A/S, 7330 Brande, Denmark, WINDTEST Kaiser-Wilhelm-Koog GmbH took measurements of the acoustic noise emissions on the Siemens WTGS 2.3 MW Mk II with a hub height of 80 m.

All measurements and analyses of the sound power level and tonality described in this report were made on the basis of the technical guideline [IEC 61400-11]. The analysis of the sound power level was carried out using the standardised wind speed which was calculated from the power curve provided by the customer (see Annex).

The data on the Siemens WTGS 2.3 MW Mk II have been evaluated by using a fourth order regression because this is the best fitting approximation over all relevant points.

The results of this measurement are given in table 4.

Table 4: Summary of results

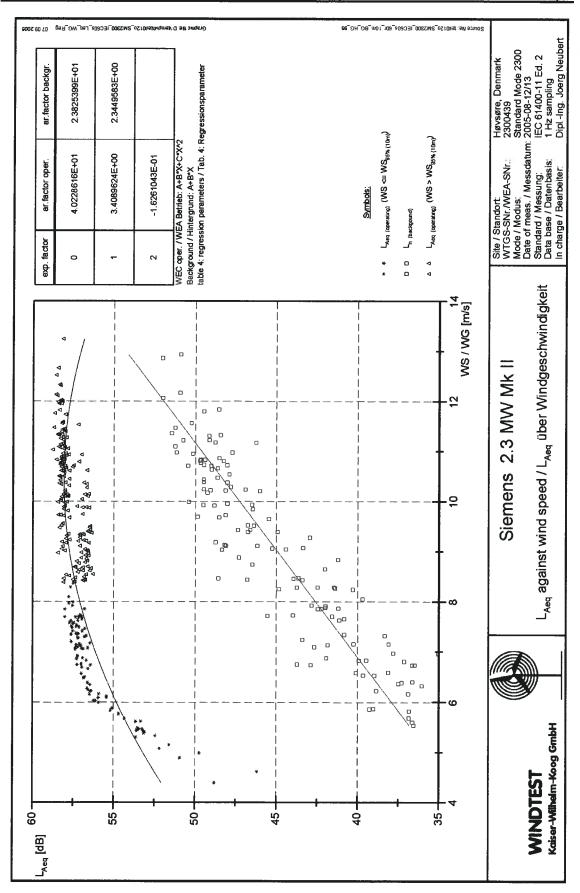
wind speed in 10 m height [m/s]	6	7	8	9	10
electrical power output calculated from the power curve [kW]	1049	1651	2106	2260	2295
measured pitch angle [degrees]	-0,8	-0,8	-0,8	0	>1
measured rotor speed [min ⁻¹]	15,1	15,3	15,4	15,8	16,0
sound power level [dB]	103,4	104,9	105,1	105,0	105,0
combined uncertainty in the sound power level, U_{c} [dB]	1,2	1,1	1,2	1,3	1,3
tonality, ∆L _k [dB]	-5,58	-4,68	-6,36	-5,43	-5,91
tonal audibility, ∆L _{a,k} [dB]	-2,58	-1,69	-3,36	-2,43	-3,58
frequency of the most prevalent tone [Hz]	1200	1200	1200	1200	530

It is assured that this report has been drawn up impartially in accordance with state-of-the-art science and technology and with best knowledge and conscience.

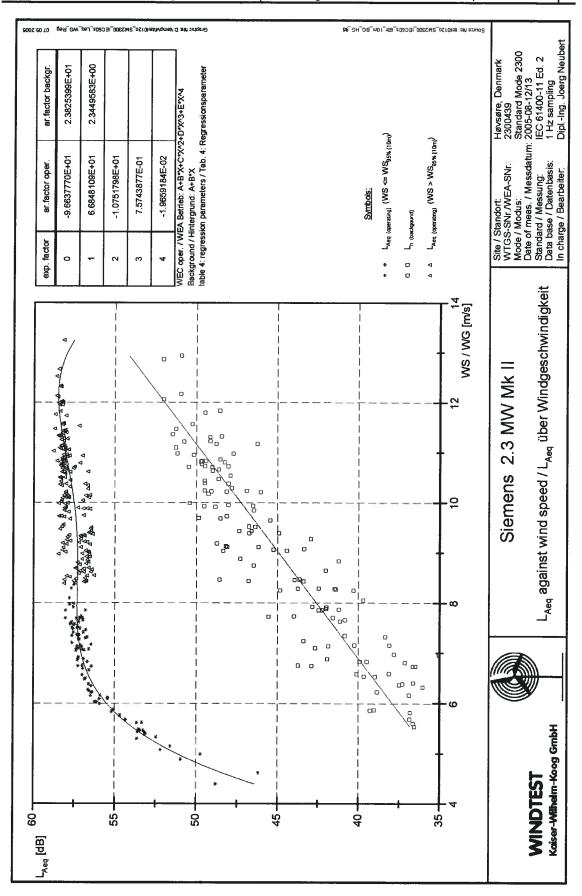
5 List of employed symbols and abbreviations d distance from rotor centre to tower axis m D rotor diameter m $\Delta L_{\text{tn,j,k}}$ tonality of the 'j th' spectrum at 'k th' wind speed, where j = 1 to 12 and k = 6, 7, 8, 9, 10dB ΔL_k energetic average of the 12 ΔL_{tn.i.k} dB $\Delta L_{a,k}$ tonal audibility dB f frequency of the tone Hz f_c centre frequency of critical band Hz Н height of rotor centre (horizontal axis turbine) or height of rotor equatorial plane (vertical axis turbine) above local ground near the wind turbine m h_A location point height (in measurement equal to microphone height) m the ratio between standardised wind speed and measured wind speed A or C-weighted sound pressure level L_A or L_C dBequivalent continuous A-weighted sound pressure level, where k = L_{Aeq,k} 6, 7, 8, 9, 10 dB equivalent continuous A-weighted sound pressure level corrected for L_{Aeq,c,k} background noise at each integer wind speed and corrected to reference conditions, where k = 6, 7, 8, 9, 10dB Ln equivalent continuous sound pressure level level of the background noise dB sound pressure level $L_{\mathbf{D}}$ dB sound pressure level of masking noise within a critical band in the 'j th' $L_{pn,j,k}$ spectrum at the 'k th' wind speed, where j = 1 to 12 and k = 6, 7, 8, 9, 10 dB average of analysis bandwidth sound pressure levels of masking noise $L_{pn,avg,j,k}$ in the 'j th' spectrum at the 'k th' wind speed, where j = 1 to 12 and k = 6, 7, 8, 9, 10 dB sound pressure level of the tone or tones in the 'j th' spectrum at the $L_{pt,j,k}$ 'k th' wind speed, where j = 1 to 12 and k = 6, 7, 8, 9, 10dB equivalent continuous sound pressure level of only wind turbine noise dB equivalent continuous sound pressure level of combined wind turbine L_{s+n} and background noise dB $L_{WA,k}$ apparent sound power level, where k = 6, 7, 8, 9, 10dB Ν Number of measured values effective electrical power P_{w} kW R₀ reference distance m R_{i} slant distance from rotor centre to actual measurement position m So reference area, $S_0 = 1 \text{ m}^2$ m UA, UB **Uncertainty components** dΒ Uc Total uncertainty dB U_{HG} Error in the background noise dB - derived wind speed from power curve V_{m} m/s V_s standardised wind speed m/s WTGS - wind turbine generator system measured sound pressure level of operating plus background noise dB У estimated sound pressure level of operating plus background noise from the **Yest** regression analysis dB

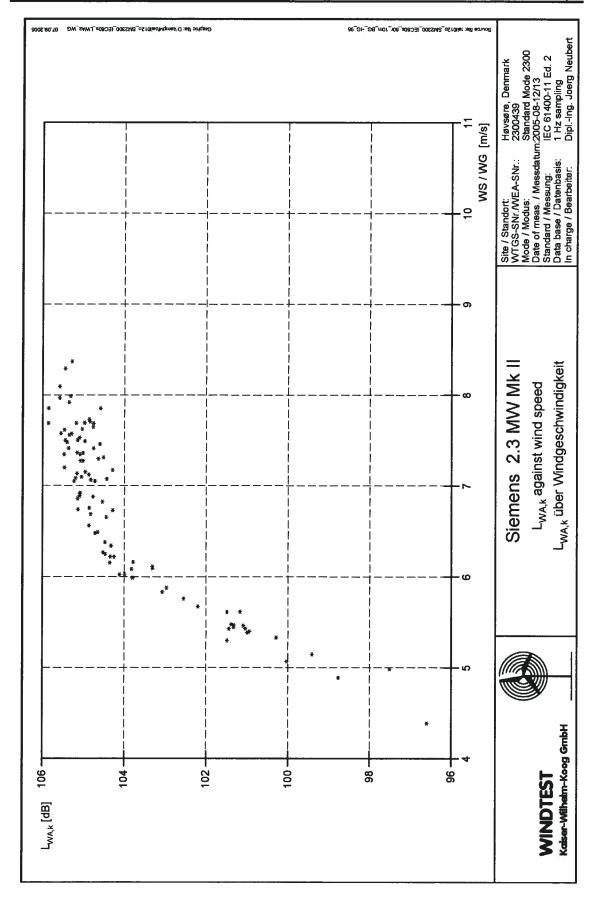
6 References

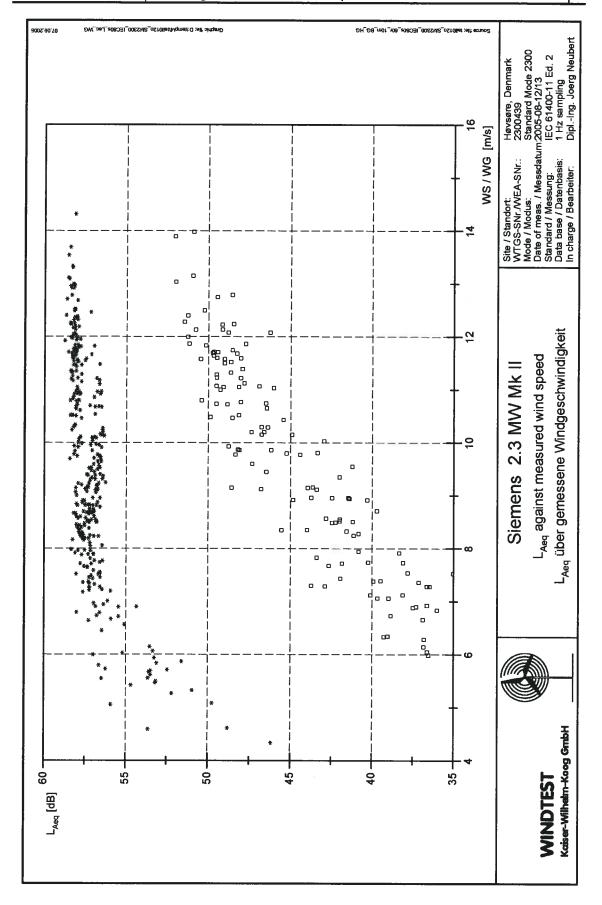
[IEC 61400-11] IEC 61400-11, Wind turbine generator systems - Part 11: Acoustic noise measurement techniques, Ed. 2.


7 Annex

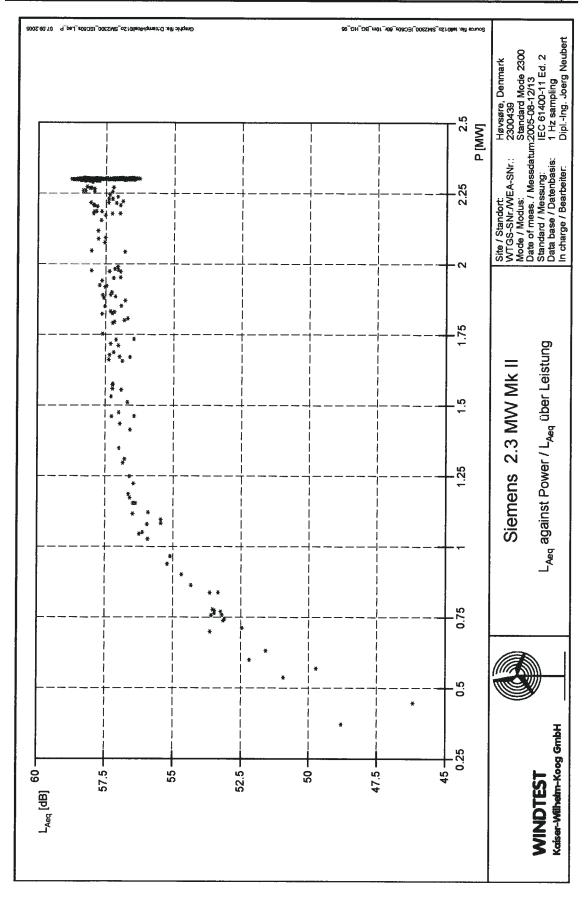
Beschreibung description	Fabrikat supplier	Typ/type	WT Nr./Ser.Nr. WT stock number/serial number	Kal. am	Eichung am standardisatio n	Einsatz used
Akustischer Kalibrator acoustic calibrator	Brûel & Kjær	4231	WT 300083004 (2438819)	-	31.12.2006	х
Mikrofon microphone	Brüel & Kjær	4188	zu WT 30002904 (2427565)	-	31.12.2006	×
Vorverstärker preamp.	Brüel & Kjær	ZC 0030	zu WT 30002904		31.12.2006	×
Mikrofonkabel microphone cable	Brüel & Kjær	AO 0560	zu WT 30002904	-	31.12.2006	×
Handschallpegelmesser decibel meter	Bruel & Kjær	2238	WT 30002904 (2437622)		31.12.2006	x
Primärwindschirm primary wind shield	Brüel & Кјæт	UA 0237	-		-	x
Sekundärwindschirm secondary wind shield	Delta Acoustics	SIM	-	-	-	
DAT-Rekorder DAT-recorder	Sony	TCD-D100	WT 300083304 (541959)	-		x
Anemometer anemometer	Thies Clima	4.3519.00.000	WT 010041504 (PN 457 0604)	Jun. 04	-	x
Windrichtungsgeber wind direction sensor	Thies Clima	4.3129.00.012	WT 020013504 (0504426	-	-	x
Temperaturgeber temperature sensors	Heraeus (Logger)	PT100	WT 300084704	Jul. 05		×
Temperaturgeber temperature sensors	Heraeus (W+W)	PT100	WT 300084604	Jul. 05	-	х
Luftdruckgeber pressure sensors	Wilmers Messtechnik (Logger)	0619	WT 090021803	Jul. 05	-	×
Luftdruckgeber	Wilmers Messtechnik (W+W)	0619	WT 090022804	Jul. 05	-	x
Leistungsumformer power transducer	Metrawatt (DME 1)	SINEAX DME 442	WT 300070903	Jun. 04	-	
Leistungsumformer power transducer	Metrawatt (DME 2)	SINEAX DME	WT 300055202	Aug. 03	-	
Leistungsumformer power transducer	Metrawatt (DME 3)	SINEAX DME 442	WT 300018898	Feb. 05	-	
Leistungsumformer power transducer	Metrawatt (DME 4)	SINEAX DME 442	WT 300079804	Feb. 05	-	
Zangenstromwandler current clamps	Chauvin Arnoux (DME 1)	D32N	WT 300071603 bis 300071803	Jul. 05	-	
Zangenstromwandler current clamps	Chauvin Arnoux (DME 2)	D32N	WT 300053501 bis 300053701	Jul. 05	-	
Zangenstromwandler current clamps	Chauvin Arnoux (DME 3)	AmpFLEX A100	WT 300091804 bis 300092004	Jul. 05	-	
Zangenstromwandler	Chauvin Amoux (DME 4)	AmpFLEX A100	WT 300085804 bis 300086004	Jul. 05	-	
Datenlogger datalog	Th. Friedrichs	1020	WT 030013504 (091630)	Jul. 04	-	x
Zweikanal-Echtzeit- Frequenzanalysator 2-channel real time frequency	Brüel & Kjær	2144	WT 9904897 (1732981)	Sep 03	<u>-</u>	x
analuser Erlassungs- und Auswertesoftware data acquisition and analytical	GfS Aachen Microsoft DATALOG GmbH	DIAdem 8.1 Excel 2000 Dasy-Lab 7.0	-	-	<u>.</u>	x
Erfassungsrechner data acquisition Computer	HP	Compag nx 9005	WT 400023903 (CNF 3371X4F)		•	
Erfassungsrechner data acquisition Computer	HP	OmniBook XE3	WT 400021502 (TW 21806701)	-		
Erfassungsrechner data acquisition Computer	HP	OmniBook XE3	WT 400020802 (TW 21121810)	•	-	
Erfassungsrechner data acquisition Computer Erfassungsrechner	HP	Compag nx 5000	WT 400026604 (CNU43700RT)	-	•	
data acquisition Computer Erfassungsrechner	HP	Compag nx 9005 Compag nx	WT 400024003 (CNF 3371X70)	-	-	
data acquisition Computer 10 m – Teleskopmast	HP	9005	WT 400024103 (CNF 3371X4X)	-	-	х
10 m – telescovic mast Unterbrechungsfreie	Clark (SMS 3)	QT 12M/HP	WT 050019003	-	-	x
Spannungsversorgung uninterruntable power sunnly	APS	Smart UPS 1000	WT 30009002104	-	-	х

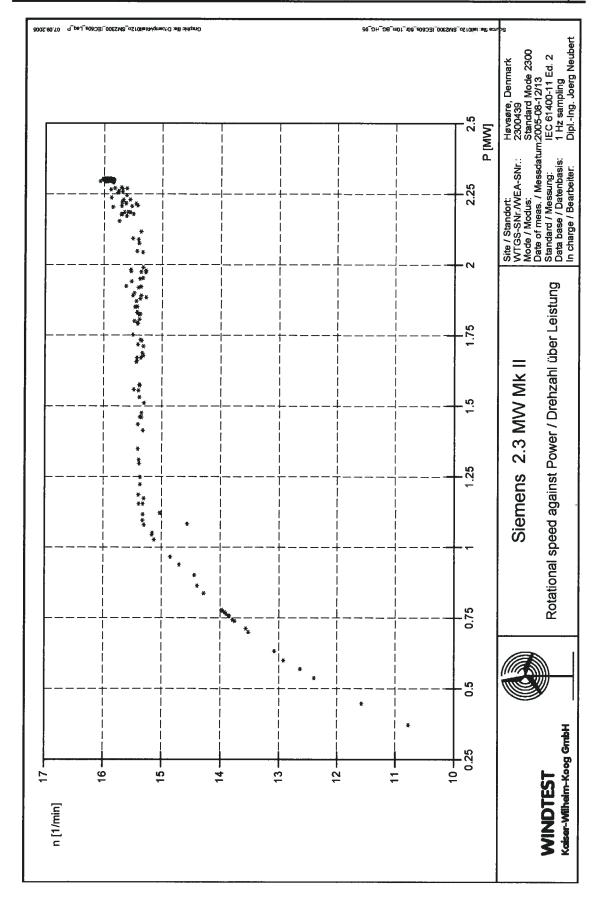


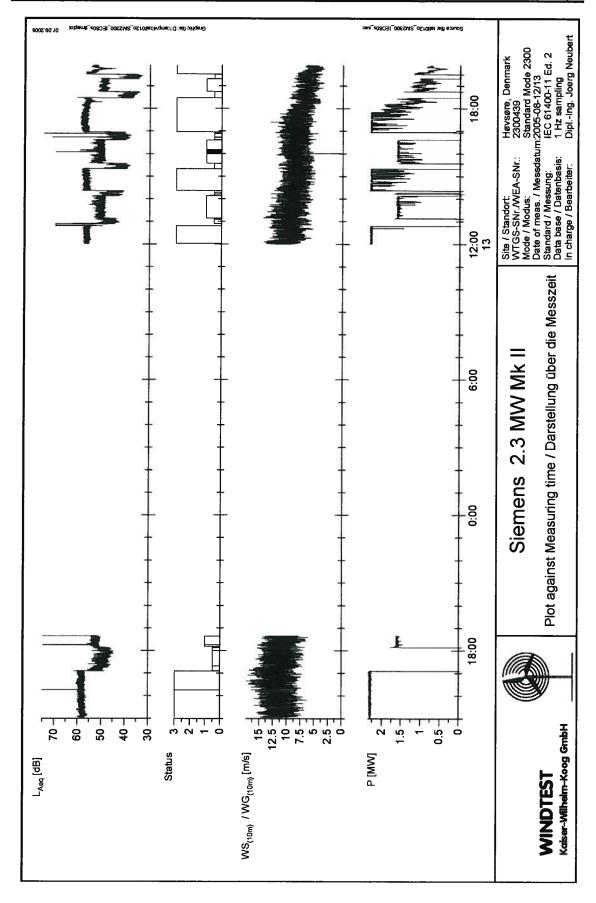


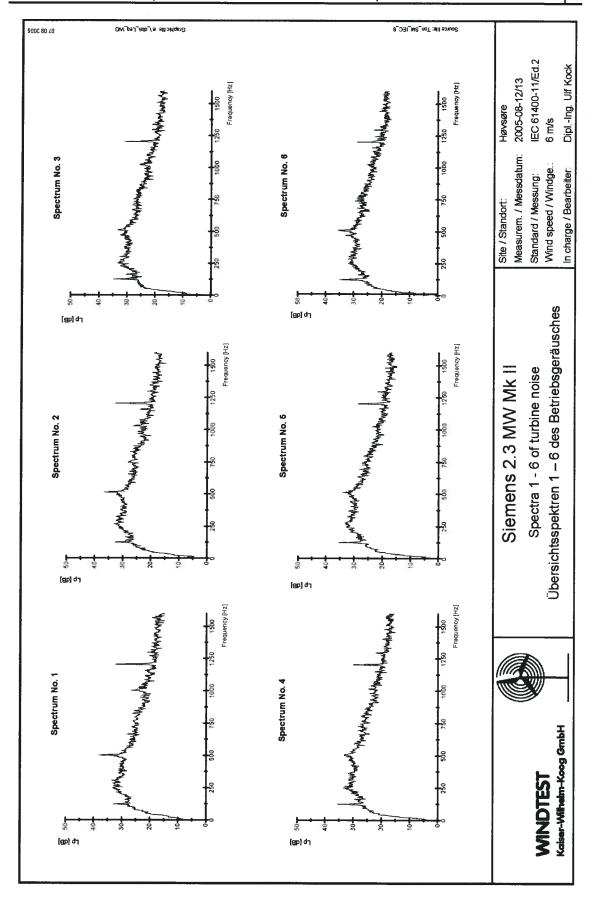


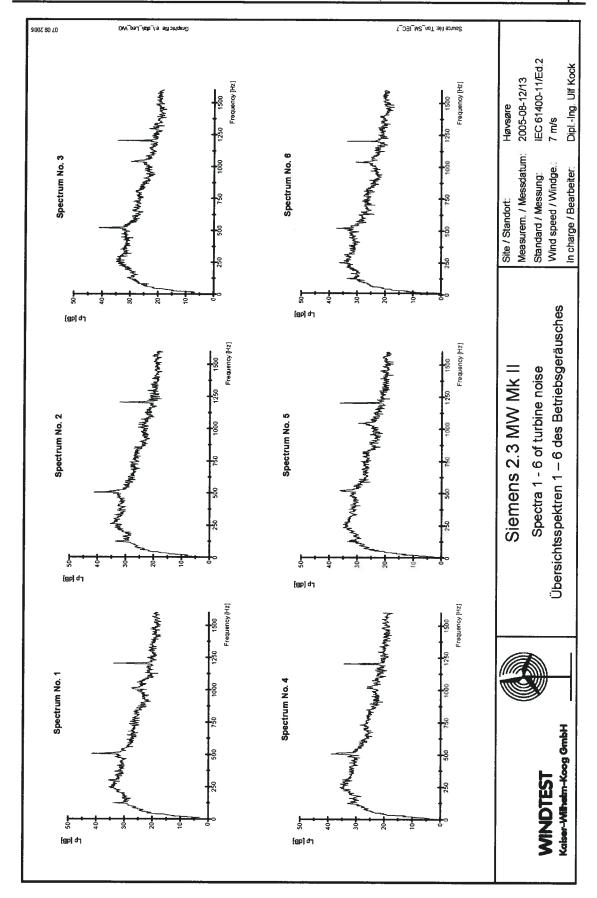
Parameters of evaluation / Auswerteparameter	of evaluation	n / Auswe	erteparar	meter :							9005.00.76
Н = 80.0	E o		II P	3.50 m	h	0:0	E	P / P Nenn	= 2.30	o MW	0 theen a
D = 93.0	e. E	N	Z ₀	0.050 m	๙	= 112.0	Ε	WS _{95%} / WG _{95%} =		11.67 m/s	5300 EC90
Results / Ergebnisse :	ebnisse :										NR_ostolioyan
WS _{95%(10m)} / WG _{95%(10m)}	G ₉₅ %(10m)	8.38 8.38	s/m 88			WSton	LAeq,k [dB]	Lbackgr [dB]	LAeq.c.k [dB]	Lwa,k [dB]	imet/iQ selt oi
Power _{95%} / Leistung _{95%}	tung _{95%}	= 2.1	2.185 MW			WG10m	55.5	37.9	55.4	103.4	fqm9
Kange of the wind direction / Windrichtungsbereich	nd direction / ereich	= 284.4	284.40° - 325.6	°89°		,	57.1	40.2	57.0	104.9	
y		= 0.93	က္ဆ			00	57.3	42.6	57.2	105.1	
average urbulence intensity / mittlere Turbulenzintensität	nce intensity / nzintensität	= 14.0	%			ത	57.3	44.9	57.0	105.0	
WS _{10m}	U _A [dB]	n N	U _{B9} [dB]	Uc [dB]		10	57.5	47.3	57.1	105.0	
9	0.44		0.04	1.2	table	e 2: results L = f((WS) / Tabelle 2: E	table 2: results L = f(WS) / Tabelle 2: Ergebnisse L = f(WG)			%ିଅନି (
7	0.31	0	0.05	1.1		WS95% WG95%	LAeq.k [dB]	Lbackgr [dB]	LAeq.c,k [dB]	LwA,k [dB]	90r_10m_BG
∞	0.41		0.08	1.2		8.38	57.3	43.5	57.1	105.1	
o	0.64		0.14	1.3	table	e 3: results L = f((WS _{95%}) / Tabelle 3.	table 3: results L = $f(WS_{95\%})$ / Tabelle 3: Ergebnisse L = $f(WG_{95\%})$	(G _{B5%})		OOEZWS ^{TC}
10	0.68		0.25	1.3	Γ						S106at self
table 1: uncertainty / Tabelle 1: Messunsicherheiten	/ Tabelle 1: Mess	unsicherheite	Ę.	**************************************	1						t ecnuo2
				S	Siemens 2.3 MW Mk II	MW Mk	_	Site / Standort: WTGS-SNr./W Mode / Modus:	Site / Standort: WTGS-SNr./WEA-SNr.: Mode / Modus:	Høvsøre, Denmark 2300439 Standard Mode 2300	,
WINDTEST Kaiser-Wilhelm-Koog GmbH	T Coog GmbH				Results / Ergebnisse	gebnisse		Date of me Standard / Data base In charge /	Date of meas. / Messdatum.2005-08-12/13 Standard / Messung: IEC 61400-11 I Data base / Datenbasis: 1 Hz sampling In charge / Bearbeiter: DiplIng. Joerg	12005-08-12/13 IEC 61400-11 Ed. 2 1 Hz sampling DiplIng. Joerg Neubert	thert

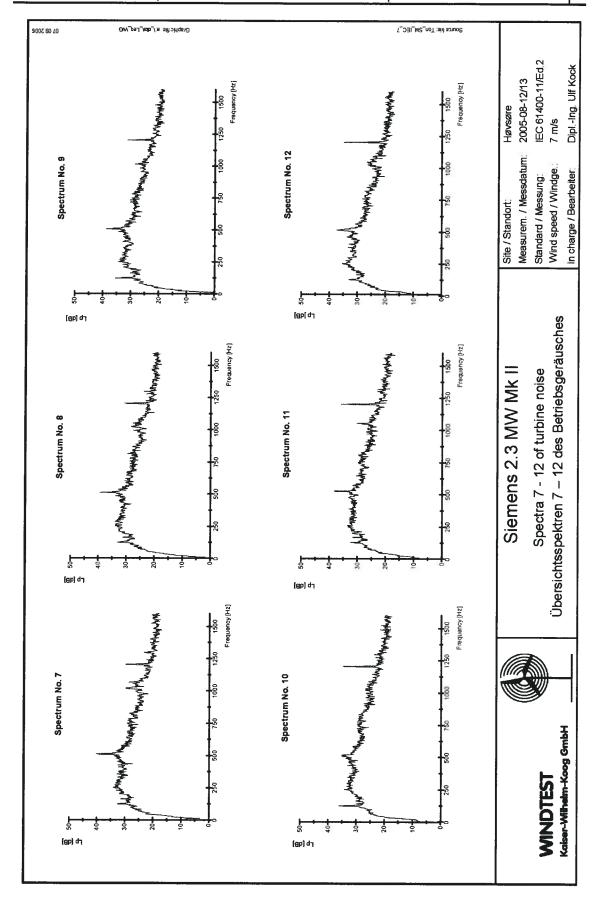




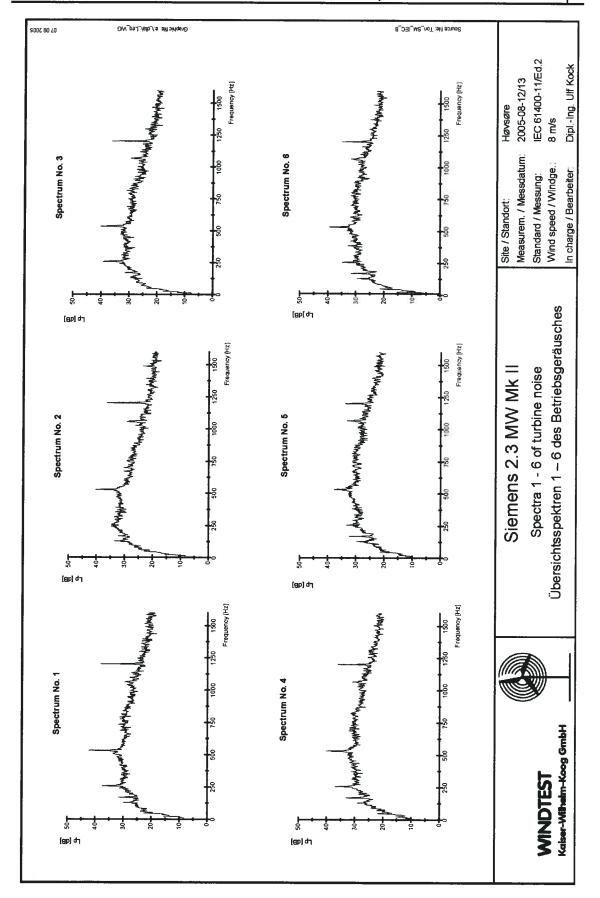


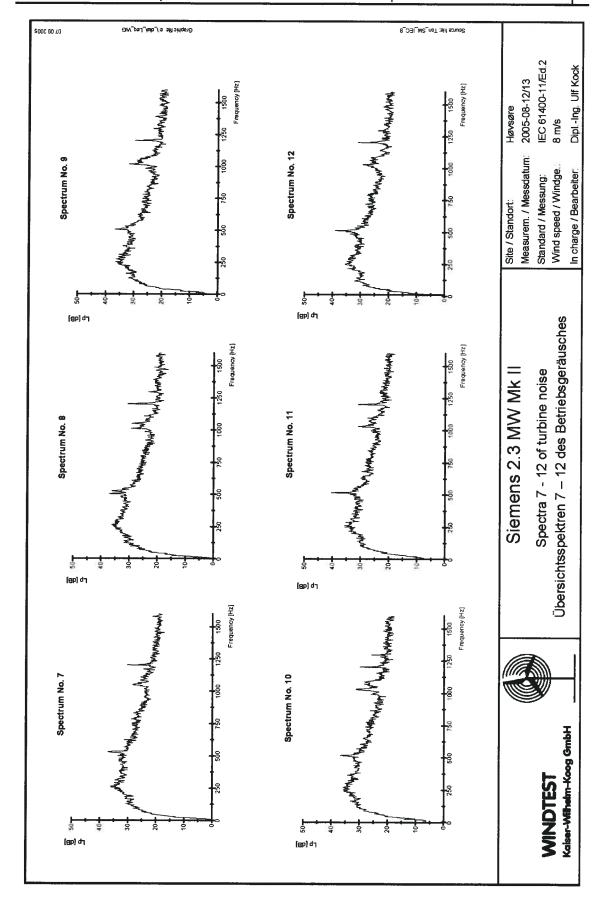




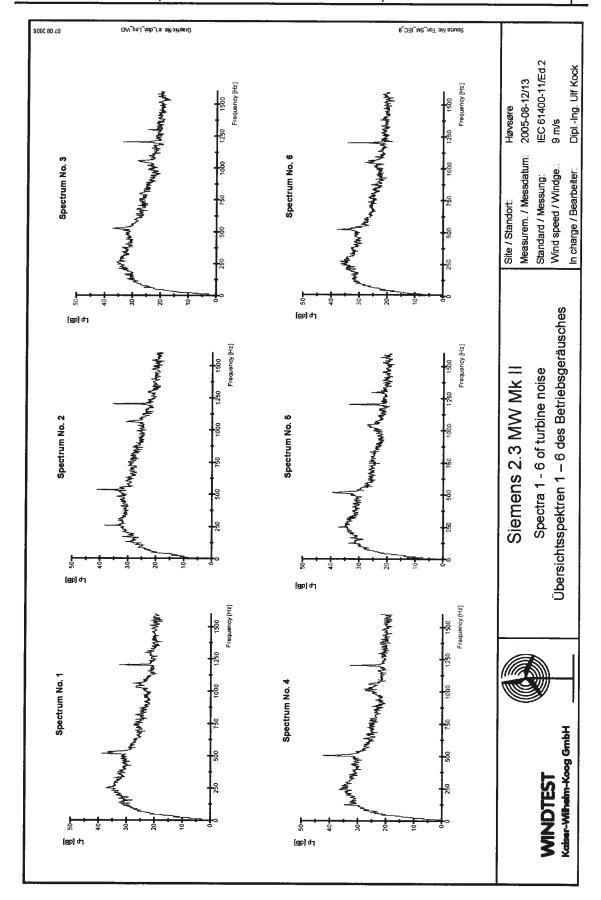


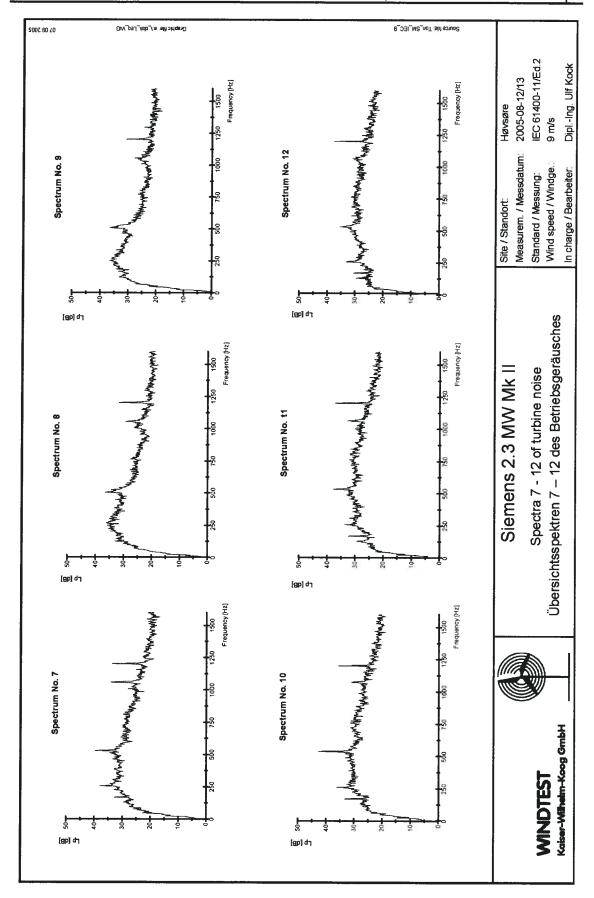
<u>د</u>	6 m/s	Wind speed / Windge.	·	etriebsgeräuscl	vertung des B	Tonhaltigkeitsbewertung des Betriebsgeräusches) —	og GmbH	WINU! ES! Kaiser-Wilhelm-Koog GmbH
1.2		Standard / Messung:	<u></u> ਲ	urbine noise	Analysis of tonality of turbine noise	Analysis o				MINDTEST
	2005-08-12/13	Measurem. / Messdatum:	Ž		i					
		Site / Standort:	ଊ	∨ Mk	Siemens 2.3 MW MK	Sieme				
	3.0 dB ?: Yes	Audibility greater than or equal to -3.0 dB ?: Yes	Audibility gre					;		
Source	(Ua) = 2.41 [dB]	Uncertainty of delta La,k (Ua) = 2.41 [dB]	<u>Unce</u>							
_no∓:sliñ	.a,k) = -2.58 [dB]	Audibility, delta Lk - La (delta La,k) = -2.58 [dB]	Audibility, o							
`aw∏ec	[dB] = -3.00 [dB]	Frequency dependant audibility criterion (La) [dB] = -3.00 [dB]	lependant audi	Frequency d						
9	Lk) = -5.58 [dB]	Energetic average of delta Lt (delta Lk) = -5.58 [dB]	nergetic avera	Ш						
	0.27	-2.99	-2.73	36.74	34.02	18.82	2.00	7	1202	71
	-4.04	-2.99	-7.04	37.31	30.27	19.38	2:00	2	1202	-
	-2.23	-3.00	-5.22	36.85	31.62	18.92	2.00	4	1204	10
	-3.12	-2.99	-6.11	37.12	31.01	19.20	2.00	2	1202	တ
	-3.20	-2.99	-6.19	38.27	32.08	20.35	2.00	2	1202	80
	-1.60	-3.00	4.59	37.57	32.98	19.65	2.00	4	1204	7
	-5.83	-3.00	-8.83	38.90	30.07	20.97	2.00	4	1204	9
æ	-4.73	-3.00	-7.73	37.49	29.77	19.57	2.00	4	1204	5
(selficini	-4.26	-3.00	-7.26	38.12	30.86	20.19	2.00	4	1204	4
oaj kapi	-3.35	3.00	-6.34	38.07	31.73	20.14	2.00	4	1204	က
SM	-1.43	-3.00	-4.42	38.33	33.91	20.40	2.00	4	1204	2
	-1.24	-3.00	-4.23	37.29	33.06	19.36	2.00	4	1204	-
	[48]	[db]	[dB]	[dB]	[dB]	[dB]	[Hz]	-	[Hz]	
.60.70	delta La, k	5	delta Ltn,j,k	Lpn,J,k	Lpt.j.k	Lpn,avg,J,k	delta f	<u> </u>	tone fT	E O O



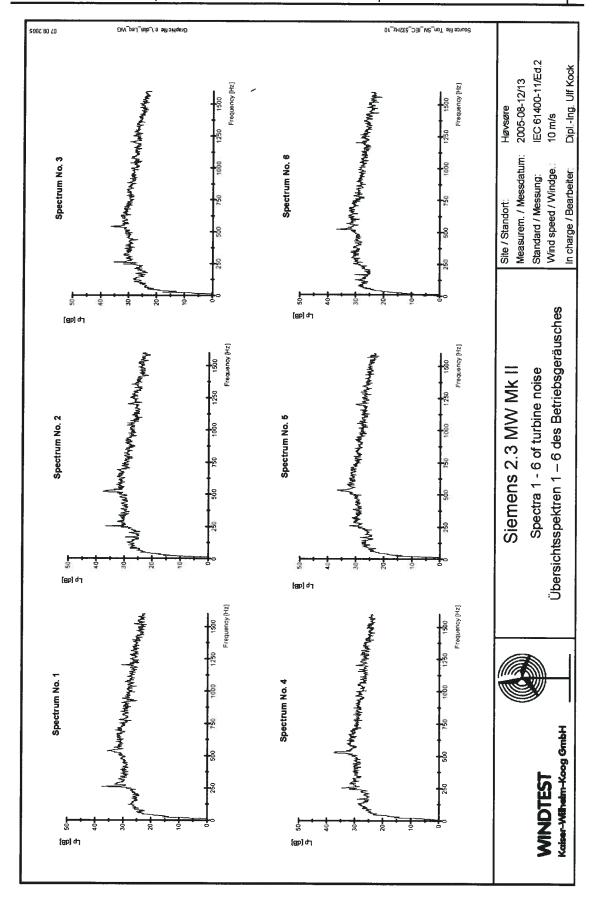


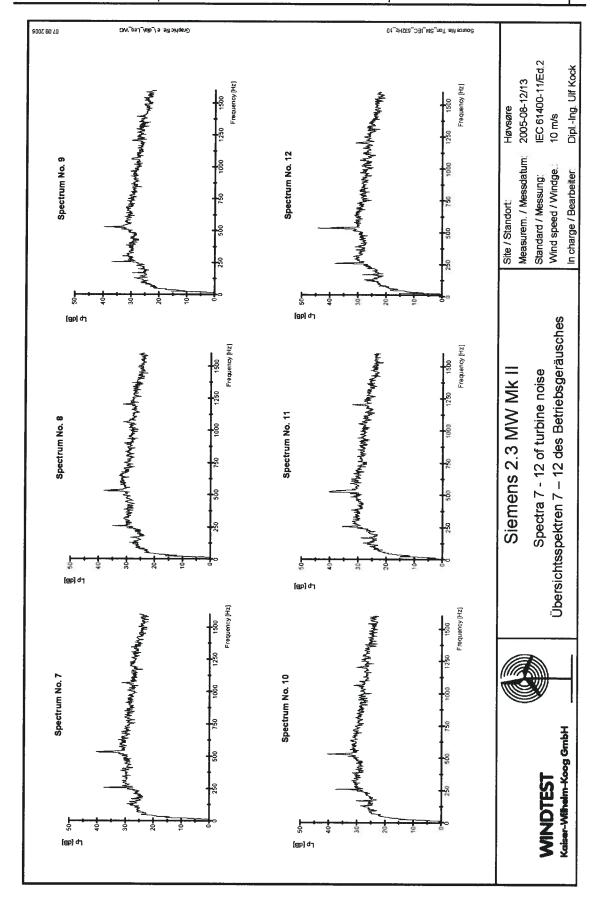
-		,								
····	IEC 61400-11/Ed_2 7 m/s	Standard / Messung: Wind speed / Windge		urbine noise	Analysis of tonality of turbine noise	Analysis of tonality of turbine noise			WINDTEST	ZZ
		Measurem. / Messdatum.	_			•	_			
Τ	Havsøre	Site / Standort:		∨ Mk =	Siemens 2.3 MW Mk II	Sieme				
	-3.0 dB ?: Yes	Audibility greater than or egual to -3.0 dB ?: Yes	Audibility gr	į				:		
Source	(Ua) = 2.43 [dB]	Uncertainty of delta La,k (Ua) = 2.43 [dB]	n							
_noT :9(i	(K) = -1.69 [dB]	Audibility, delta Lk - La (delta La,k) = -1.69 [dB]	Audibility,							
PM IEC	dB] = -3.00 [dB]	Frequency dependant audibility criterion (La) [dB] = -3.00 [dB]	lependant auc	Frequency						
Ĺ	Lk) = -4.68 [dB]	Energetic average of delta Lt (delta Lk) = -4.68 [dB]	nergetic aver	ш						
	0.36	-2.99	-2.64	38.82	36.18	20.90	2.00	1202	12	
	-0.68	-2.99	-3.68	40.29	36.62	22.37	2.00	1202	-	
	-1.83	-3.00	-4.83	40.41	35.58	22.48	2.00	1204	10	
	-5.75	-3.00	-8.75	40.27	31.52	22.34	2.00	1204	6	
	-5.60	-3.00	-8.60	40.00	31.40	22.07	2.00	1204	80	
	-5.87	-3.00	-8.87	39.55	30.69	21.62	2:00	1204	7	
	-2.78	-2.99	-5.78	39.80	34.03	21.88	2.00	1202	9	
gen0	0.18	-2.99	-2.82	39.78	36.97	21.86	2:00	1202	5	
Hcfie e'	-0.26	-3.00	-3.26	39.06	35.80	21.13	2.00	1204	4	
bay kego i	09:0-	-2.99	-3.59	39.36	35.77	21.44	2.00	1202	8	
-Me	-2.57	-3.00	-5.57	38.95	33.39	21.03	2:00	1204	2	
	-0.94	-3.00	-3.93	38.65	34.72	20.72	2.00	1204	-	
	[48]	[dB]	[dB]	[dB]	[dB]	[dB]	[Hz]	[Hz]		
60 40	delta La,k	3	delta Ltn.j, k	Lpn,J, k	Lpt.J.k	Lpn,avg,j,k	delta f	tone fT	m No.	



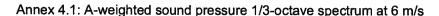


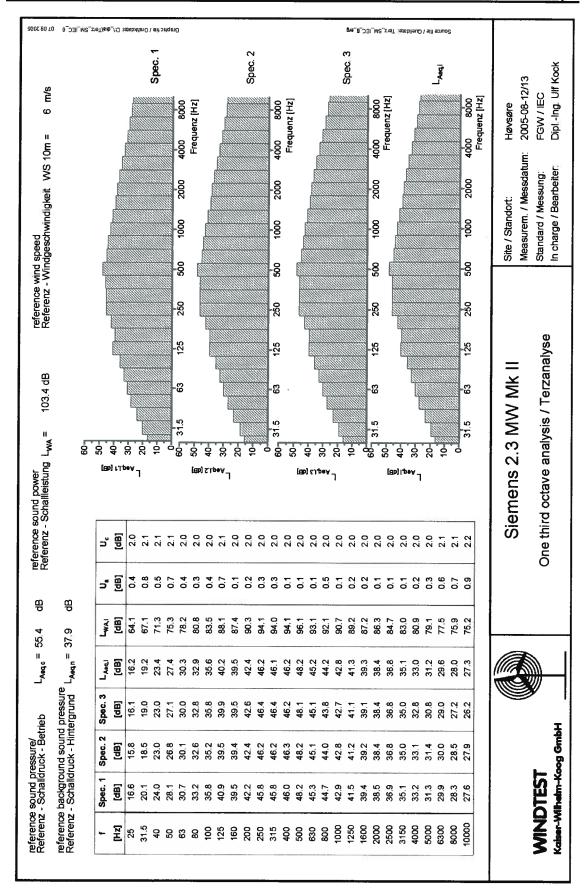
7	IEC 61400-11/Ed.2 8 m/s	Standard / Messung: Wind speed / Windge.		urbine noise setriebsgeräusc	Analysis of tonality of turbine noise igkeitsbewertung des Betriebsgerä	Analysis of tonality of turbine noise Tonhaltigkeitsbewertung des Betriebsgeräusches			WINDTEST Kotser-Wilhelm-Koop GmbH	WINDTEST
		Measurem. / Messdatum.	≥							
	İ.	Site / Standort:	S	∨ Mk =	Siemens 2.3 MW MK II	Sieme				
	o -3.0 dB ?: No	Audibility greater than or equal to -3.0 dB ?: No	Audibility gr							
Source	(Ua) = 2.56 [dB]	Uncertainty of delta La,k (Ua) = 2.56 [dB]	<u>Unce</u>							
_noT ski	a,k) = -3.36 [dB]	Audibility, detta Lk - La (detta La,k) = -3.36 [dB]	Audibility, 6							
SW IEC	dB] = -2.99 [dB]	Frequency dependant audibility criterion (La) [dB] = -2.99 [dB]	lependant aud	Frequency o						
8	LK) = -0.30 [GD]	ide oi deita Et Ideita	ileigeus avei	41						
	Lk) = -6.36 [dB]	Energetic average of delta Lt (delta Lk) = -6.36 [dB]	nergetic avera							
	-5.13	-3.00	-8.13	39.59	31.46	21.66	2.00	4	1204	12
	-5.41	-2.99	-8.41	40.36	31.96	22.44	2:00	75	1202	=
	-5.67	-2.99	-8.67	39.70	31.03	21.77	2:00	12	1202	9
	-6.08	-3.00	-9.08	39.37	30.29	21.44	2.00	4	1204	o
	-2.96	-2.99	-5.95	38.48	32.53	20.56	2:00	21	1202	80
	-8.55	-2.99	-11.54	40.05	28.51	22.13	2:00	20	1202	7
	-4.75	-2.99	-7.74	43.21	35.47	25.29	2.00	20	1202	9
agen 9	-5.79	-2.99	-8.78	43.70	34.91	25.78	2.00	20	1202	S
is skickle	-3.25	-2.99	-6.25	42.95	36.71	25.03	2.00	20	1202	4
p9.1_Ks#b_	-1.25	-2.99	-4.24	41.02	36.78	23.10	2:00	75	1202	က
-Me	0.03	-2.99	-2.97	39.88	36.91	21.96	2.00	22	1202	2
	-0.25	-2.99	-3.24	42.09	38.84	24.17	2.00	22	1202	-
	[dB]	[dB]	[dB]	[dB]	[dB]	[48]	[Hz]	7	[Hz]	
60 40	delta La, k	4	delta Ltn.j.k	Lpn,j, k	Lpt.J.k	Lpn,avg,j,k	delta f	Ę	tone fT	E O V



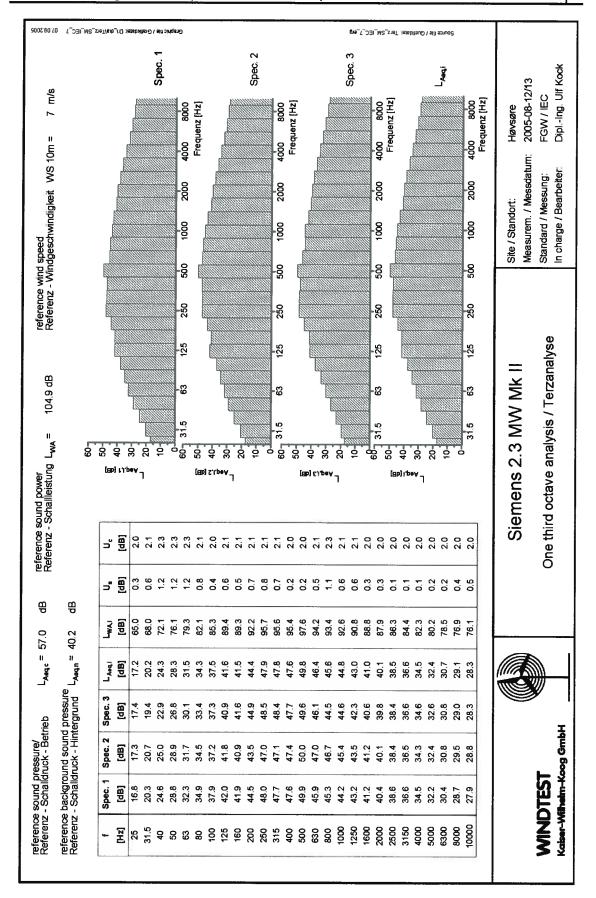


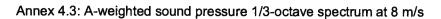
	s/m 6	Wind speed / Windge		3etriebsgeräusch	vertung des E	Tonhaltigkeitsbewertung des Betriebsgeräusches)—
	IEC 61400-11/Ed.2	Standard / Messung:	<u></u>	urbine noise	Analysis of tonality of turbine noise	Analysis o		
	2005-08-12/13	Measurem. / Messdatum.	Σ_			· · · · · · · · · · · · · · · · · · ·		
	Høvsøre	Site / Standort:	S	/ MK	Siemens 2.3 MW Mk II	Sieme		
	-3.0 dB ?: Yes	Audibility greater than or equal to -3.0 dB ?: Yes	Audibility gre					
Source	(Ua) = 2.32 [dB]	Uncertainty of delta La,k (Ua) = 2.32 [dB]	<u>Unce</u>					
_noT :9fit	a,k) = -2.43 [dB]	Audibility, delta Lk - La (delta La,k) = -2.43 [dB]	Audibility, c					
SM IEC	dB] = -2.99 [dB]	Frequency dependant audibility criterion (La) [dB] = -2.99 [dB]	pendant audi	Frequency de				
8	Lk) = -5.43 [dB]	Energetic average of delta Lt (delta Lk) = -5.43 [dB]	nergetic avera	可				
	-2.86	-2.99	-5.85	44.01	38.16	26.09	2.00	1202
	-1.54	-2.99	-4.54	43.20	38.67	25.28	2.00	1202
	-2.60	-2.99	-5.59	42.42	36.83	24.50	2.00	1202
	.5.64	-2.99	-8.63	40.12	31.49	22.20	2.00	1202
	-4.37	-2.99	-7.37	39.45	32.08	21.53	2.00	1202
	-2.77	-2.99	-5.76	40.52	34.75	22.59	2.00	1202
	-1.28	-2.99	-4.28	39.36	35.08	21.44	2.00	1202
qenƏ	-2.14	-2.99	-5.13	39.48	34.35	21.56	2.00	1202
hicfile e:/	-2.48	-3.00	-5.48	39.46	33.98	21.53	2.00	1204
ps/_laio_	1.94	-2.99	-4.93	39.28	34.35	21.36	2.00	1202
9M ⁻	-1.29	-2.99	-4.28	40.51	36.23	22.59	2.00	1202
	-2.09	-2.99	-5.09	39.13	34.04	21.21	2.00	1202
	[dB]	[dB]	[dB]	[48]	[dB]	[dB]	[Hz]	[Hz]
BO 40	delta La, k	ធ	delta Ltn.j,k	Lpn,J, k	Lpt,J,k	Lpn,avg.j,k	delta f	tone fT

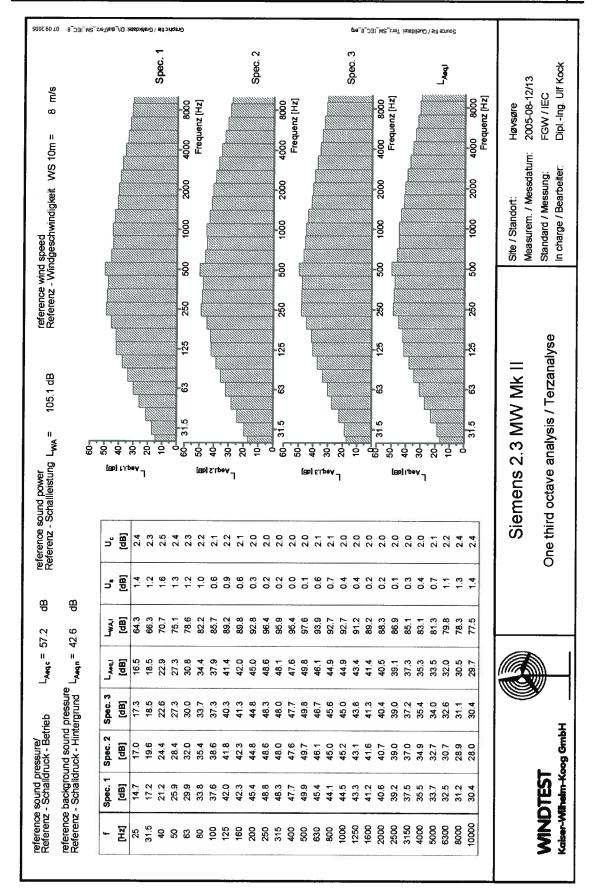


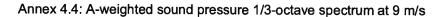


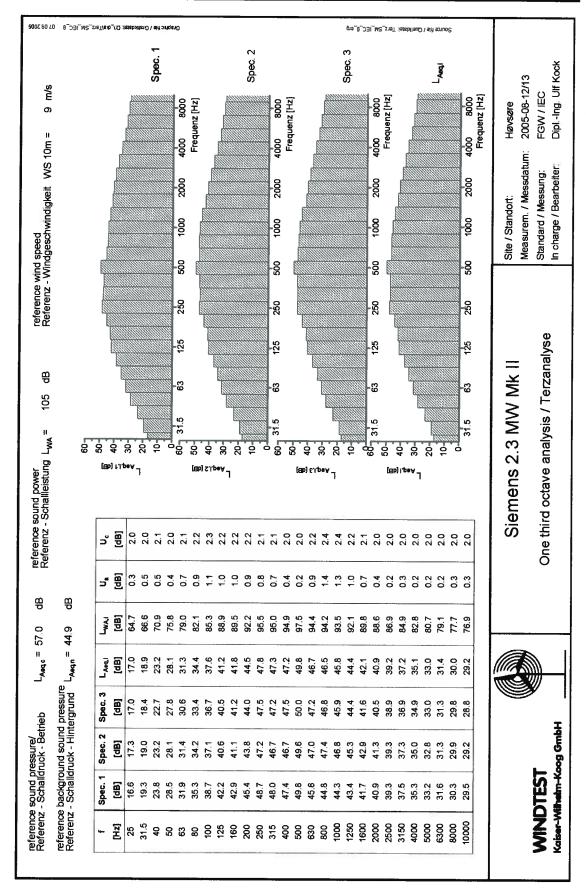
	10 m/s	Wind speed / Windge		3etriebsgeräusch	wertung des E	Tonhaltigkeitsbewertung des Betriebsgeräusches	-	Hqmg	Kaiser-Withelm-Koog GmbH
	IEC 61400-11/Ed.2	Standard / Messung:		urbine noise	Analysis of tonality of turbine noise	Analysis c	_		MINDTEST
	2005-08-12/13	Measurem. / Messdatum.	≥	· · · · · · · · · · · · · · · · · · ·			_		
	l	Site / Standort:	S	V Mk II	Siemens 2.3 MW Mk II	Sieme			
os	o -3.0 dB ?: No	Audibility greater than or equal to -3.0 dB ?: No	Audibility gr						
i selfa son.	(Ua) = 3.13 [dB]	Uncertainty of delta La,k (Ua) = 3.13 [dB]	Unce						
M&_noT	a,k) = -3.58 [dB]	Audibility, delta Lk - La (delta La,k) = -3.58 [dB]	Audibility, o						
EC P3SI	dB] = -2.33 [dB]	Frequency dependant audibility criterion (La) [dB] = -2.33 [dB]	lependant aud	Frequency d					
01SH	Lk) = -5.91 [dB]	<u>Energetic average of delta Lt (delta Lk) = -5.91 [dB]</u>	nergetic avera	Ш					
	1.95	-2.34	-0.39	46.39	46.01	30.39	2.00	534	12
	-0.03	-2.33	-2.36	47.03	44.67	31.04	2.00	526	11
	-2.53	-2.33	-4.87	47.03	42.17	31.04	2.00	530	10
	-4.87	-2.33	-7.20	47.52	40.32	31.53	2.00	528	o o
	-5.29	-2.33	-7.62	47.00	39.38	31.00	2.00	530	Φ
	-0.85	-2.34	-3.19	47.08	43.89	31.08	2.00	534	7
	-13.65	-2.32	-15.98	47.23		31.25	2.00	524	ω
* 09	-13.67	-2.34	-16.00	47.99		31.98	2.00	534	ιo.
a ski cirk	-3.12	-2.33	-5.44	46.79	41.35	30.81	2.00	526	4
pa/_leito_/	-13.68	-2.34	-16.02	47.77		31.75	2.00	540	m
- Ne	-13.65	-2.32	-15.97	47.69		31.72	2.00	520	2
	-13.67	-2.34	-16.01	47.81		31.80	2:00	536	-
	[dB]	[dB]	[qB]	[dB]	[dB]	[dB]	[Hz]	[Hz]	
60 40	detta La, k	4	delta Ltn.j, k	Lpn.J.k	Lpt.J.k	Lpn,avg.J,k	deita f	tone fT	N E

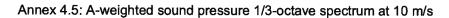


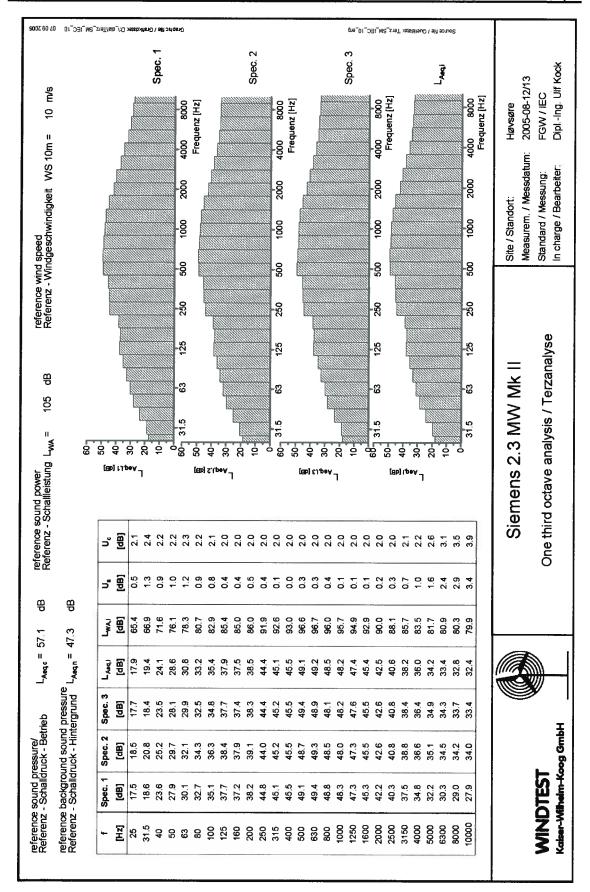


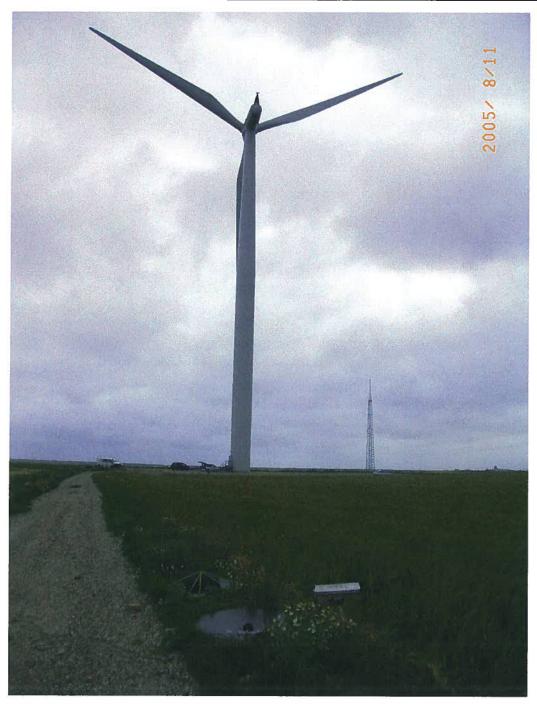






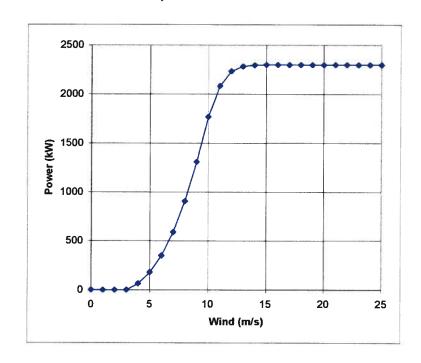






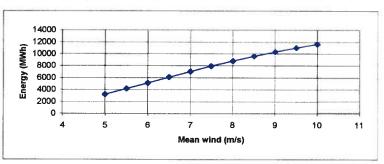
Picture from the board in direction of the WTGS

Picture of microphone and board



PP 2.3 MW Mk II, 1.225 kgm3 / 30-06-2004

Bonus 2.3 MW Mk II, 1.225 kg/m3 Sales Power Curve, Preliminary


The calculated power curve data are valid for the above air density conditions, clean rotor blades, and horizontal, undisturbed air flow with 10% turbulence intensity.

Wind	Power
[m/s]	[kW]
1	0 0 0
2	o
3	o
0 1 2 3 4 5	65
5	180
6	352
7	590
8	906
9	1308
10	1767
[11	2085
12	2234
13	2283
14	2296
15	2299
16	2300
17	2300
18	2300
19	2300
20	2300
21	2300
22 23	2300
23	2300
24	2300
25	2300

The annual energy production data for different annual mean wind speeds in hub height are calculated from the above power curve assuming a Rayleigh wind speed distribution, 100 percent availability, and no reductions due to array losses, grid losses, or other external factors affecting the production.

Wind	Energy
[m/s]	[MWh]
5.0	3238
5.5	4179
6.0	5134
6.5	6089
7.0	7037
7.5	7926
8.0	8792
8.5	9580
9.0	10324
9.5	11002
10.0	11616

HST

Bonus Enerav A/S

1/1

Herstellerbescheinigung zu spezifischen Daten der Anlage vom Typ Manufacturer's certificate on specific data of the type of installation

Datum / date: 22/08/2005

1. Aligemeines		Gene
Hersteller	Siemens Wind Power A/S	manufacturer
Anlagenbezeichnung	2.3 MW mkli	type name
Art (horizontale/vertikale Achse)	Horizontal	type (horizontal / vertical axls)
Nennleistung	2300 kW	rated power
Nabenhöhe über Grund	80 m	hub height above ground
Nabenhöhe über Fundamentflansch	80 m	hub height above top of foundation flang
Nennwindgeschwindigkeit	12 m/s	rated wirld speed
Ein- und Ausschaltwindgeschwindigkeit	3/25 m/s	cut-in and cut-out wind speed
Beitrag zum Kurzschlussstrom Rotor	appr. 2.5 kA	contribution to short circuit current
Durchmesser	00.4	Roto
Bestrichene Fläche	92.4 m	diameter
Anzahl der Blätter	6706 m² 3	swept area
		number of blades
Nabenart (pendeInd/starr) Anordnung zum Turm (luv/lee)	Rigid	kind of hub (teetered/rigid)
Nenndrehzahl / -bereich	Luv	relative position to tower (luv/lee)
Auslegungsschnellaufzahl	6,1-18,4 U/min / rpm	rated speed / speed range
Rotorblatteinstellwinkel	-2 to 82° Pitch controlled	design tip speed ratio
Konuswinkel	-2 to 82° Pitch controlled 2°	rotor blade pitch setting
Achsneigung	6°	cone angle
Abstand Rotorflanschmittelpunkt -	•	tilt angle
Turmmittellinie	3.5 m	distance between rotor flange centre and
	3.5 III	tower centre line
Blatt		Blade
Hersteller	Siemens Wind Power A/S	manufacturer
Typenbezeichnung	B45	type
Profile innen/außen	FFAW3/ NACA63-6xx	blade section inner/outer
Material	GRE	material
Länge	45 m	length
Profiltiefe max./min.	3.35 m/ 0.7 m	chord length (max./min.)
Zusatzkomponenten (z.B. stall strips,	Vortex generator	additional components (e.g. stall strips,
Vortex-Generatoren, Turbulatoren)		vortex generators, trip strips)
Extenderlänge	N/A	extender length
Getriebe		Gea
Hersteller	Flender	manufacturer
Typenbezeichnung	PEAB 4456	type
Ausführung	Planetary/helical	design
Übersetzungsverhältnis	1 : 90.84	speed ratio
Generator		Generator
Hersteller	ABB	manufacturer
Typenbezeichnung	AMA500L4A	type
Anzahl	1	numbers
Art	Asynchronous	design
Nennleistung(en)	2400 kW	rated power (s)
Nennscheinleistung	2690 kVA	rated apparent power
Nenndrehzahlen oder Drehzahlbereich	600-1800 1/min rpm	rated speed (s)/ speed range
Spannung	750 ∨ @1550rpm	voltage
Frequenz	20-60 Hz	frequency
Nennschlupf	%	rated slip
Turm		Tower
Hersteller		manufacturer
Typenbezeichnung	DSSM04	type
Ausführung (Gitter/Rohr, zyl./kon.)	Tapered turbular	design (lattice/tubular, cylindrical/ conical)
Material	S355	material

Seite 1 von 2

7. Windrichtungsnachführung		Yaw control
Ausführung (aktiv/Passiv)	Active	design (active/passive)
Antriebsart (el./mech./hydr.)	Electrical	drive (electr./mech./hydr.)
Dämpfungssystem während des Betriebes	Friction	damping system during operation
8. Betriebsführung/ Regelung	I	Other electric installations
Art der Leistungsregelung	Pitch control	kind of power control
Antrieb der Leistungsregelung	Blade pitch	actuation of power control
Hersteller der Betriebsführung/ Regelung	KK-electronic	manufacturer of control system
- Typenbezeichnung	WTC 3	- type
- Verwendete Steuerungskurve		- applied used control characteristics
9. Sonstige elektrische Komponenten		Other electric installations
Anzahl der Kompensationsstufen	Controlled by use of	number of compensation stages
	4 quadrant	•
	frequency converter	
Blindleistung Stufe 1	kvar	reactive power stage 1
Art der Netzkopplung	Connected by use	kind of interconnection
	of frequency conv.	
- Hersteller	Alstom	- manufacturer
- Typenbezeichnung	4 guadrant	- type
-	frequency conv.	-
Netzschutzhersteller	KK	mains protective manufacturer
- Typenbezeichnung		- type
- Einstellbereiche:		- adjustment ranges:
Spannungssteigerungsschutz	759 V line-line	overvoltage protection
Spannungsrückgangsschutz	621 V line-line for	undervoltage protection
	more than 3 sec.	didervoltage protection
Frequenzsteigerungsschutz	51,5 Hz	overfrequency protection
Frequenzrückgangsschutz	47,5 Hz	overfrequency protection underfrequency protection
Typenbezeichnung der Abschalteinheit	Short circuit breaker	type of contact break device
Oberschwingungsfilter (Ja/Nein)	Yes	harmonic filter (yes/no)
(Oberschwingungsfilter müssen auf den	163	
Netzverknüfpungspunkt ausgelegt sein.)		(harmonic filter have to be designed for the
10. Bremssystem		point of common coupling) Brake system
Bremssystem (primär/sekundär)	Blade / Mech. brake	brake system (primary/secondary)
- Aktivierung	Hydraulic	- activation
- Anordnung	Hydraulic	- location
- Bremsenart	Pitch blade/ brake disc	- type
- Betätigung	Active / Passive	- actuation
11. Typenprüfung		Type test
Prüfbehörde	DNV	testing authority
Aktenzeichen		reference
12. Informativer Tell		Informative
Standort der vermessenen WEA	Høvsøre DK	location of measured WTGS
Koordinaten des Standorts		coordinate of location
Seriennummer der WEA	2300439	Serial number of WTGS
der Blätter	1001/ 1002/ 1003	blades
des Getriebes	4803384-020-1	gearhov
des Generators	457691 5 EM	generator
Anschrift des Herstellers	Siemens Wind Pow Postbox 171 - Boru	pvej 16 22 - 8 - 05 //
Address of manufacturer	DK-7330 Brande - Iel.: +45 9942 222	2 Stempel, Unterschrift
		stamp, signature

Der Hersteller der Windenergieanlage bestätigt, daß die WEA, deren Schallemission, Leistungskurve und elektrischen Eigenschaften in den Prüfberichten abgebildet ist, hinsichtlich ihrer technischen Daten mit den o.g. Positionen identisch ist.

The manfacturer of the wind turbine generator system confirms that the WTGS whose noise level, power curve and grid compatability is measured and depicted in the test report xxxxxxxx is identical with the above entries with regard to its technical data.

Seite 2 von 2

Published by and copyright © 2009: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany

Siemens Wind Power A/S Borupvej 16 7330 Brande, Denmark www.siemens.com/wind

For more information, please contact our Customer Support Center.
Phone: +49 180 524 70 00
Fax: +49 180 524 24 71
(Charges depending on provider)
E-mail: support.energy@siemens.com

Renewable Energy Division
Order No. E50001-W310-A121-X-4A00
Printed in Germany
Dispo 34804, c4bs No. 7491
61/19716 L WS 04096.

Printed on elementary chlorine-free bleached paper.

All rights reserved.
Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners.

Subject to change without prior notice.
The information in this document contains general descriptions of the technical options available, which may not apply in all cases.
The required technical options should therefore be specified in the contract.

The new standard for moderate wind conditions

Siemens Wind Turbine SWT-2.3-101

Answers for energy.

SIEMENS

www.siemens.com/energy

Your trusted partner

Siemens has been a major driver of innovation in the wind power industry since the early 1980s when wind turbine technology was still in its infancy.

Technology has changed with the times, but Siemens' commitment to providing its customers with proven wind turbine solutions remains the same.

The combination of robust and reliable turbines, highly efficient solutions for power transmission and distribution and a deep understanding of the entire energy market ensures that Siemens will continue to be a leading supplier.

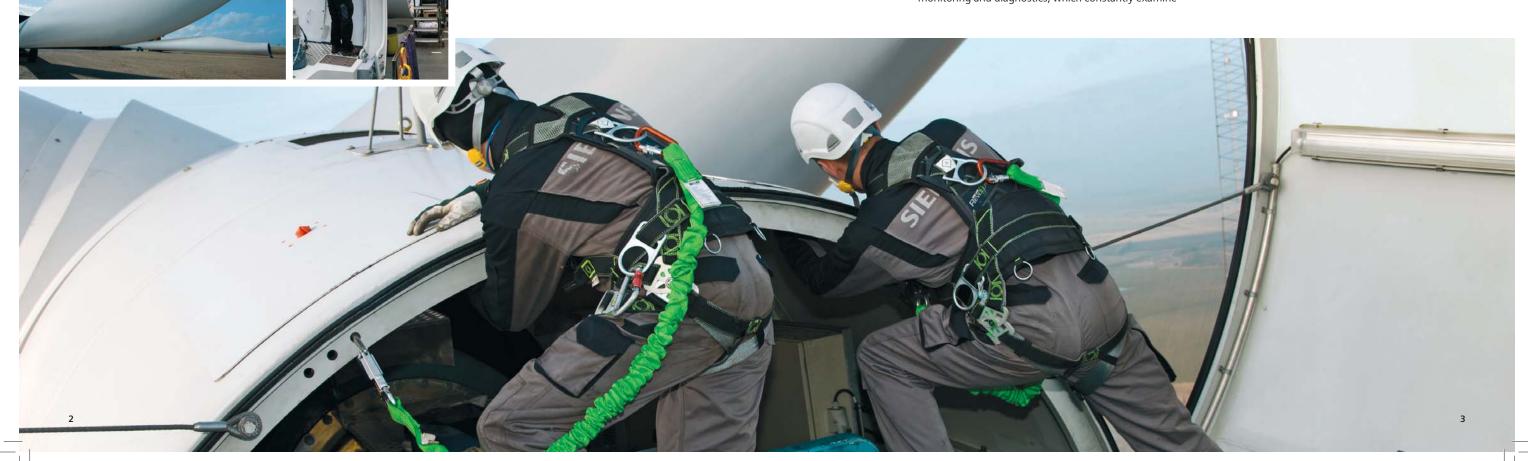
Siemens' record, when it comes to on-time delivery, is impeccable. Long-lasting customer relationships, based on the successful installation of wind turbines, provide for a sound, sustainable and profitable investment.

Drawing on 140 years of experience in the energy sector, a strong focus on renewables and a global network of highly skilled and trained employees, Siemens has proven itself to be a trustworthy and reliable business partner. And will continue to be in the future.


Harvest more energy from sites with moderate wind conditions

The Siemens SWT-2.3-101 turbine is designed to deliver unparalleled performance and reliability, making it especially suited to areas with moderate wind conditions.

The SWT-2.3-101 turbine offers low energy production costs, and joins Siemens' 2.3-MW product family, which has proven availabilitity that is among the highest in the industry. The 101-meter rotor is specifically designed to optimize the energy output in areas with moderate wind conditions. The turbine is also ideal for all types of grid connections in most major markets.


The SWT-2.3-101 is designed to last. The robust and reliable design offers a high yield with low maintenance costs. The turbine is backed by advanced condition monitoring and diagnostics, which constantly examine

Siemens has the right turbines for all wind conditions

the turbine. Any change in a turbine's performance is promptly addressed by an experienced after-sales service team either remotely or in the field.

If you desire a better return on investment and superior availability, take a closer look at the SWT-2.3-101 turbine.

Superior performance gives higher yields

Optimum energy at moderate wind conditions

Harvesting more energy

The SWT-2.3-101 wind turbine is designed to increase the energy returns from sites with moderate wind conditions. Advanced blade technology also allows for quieter operation. The B49 blade with a rotor diameter of 101 meters and pitch regulation optimizes power output and increases control over the energy output.

High availability

Currently, the Siemens fleet of 2.3-MW wind turbines sets the industry standard for availability. The SWT-2.3-101 will build on the reputation for reliability that the market has come to expect from a Siemens Wind turbine.

High yield with minimal maintenance

Siemens optimizes the return on investment in its wind turbines through intelligent maintenance that ensures the turbine to deliver high yield with low operational costs.

The rugged structural design, combined with an automatic lubrication system, internal climate control and a generator system

without slip rings contributes to exceptional reliability. The innovative design of the SWT-2.3-101 allows for longer service intervals.

Superior grid compliance

The Siemens NetConverter® system is designed for maximum flexibility in the turbine's response to voltage and frequency variations, fault ride-through capability and output adjustment. The advanced wind farm control system provides state-of-the-art fleet management.

Proven track record

Siemens has a proven track record of providing reliable turbines that last. The world's first offshore wind farm in Vindeby, Denmark, was installed in 1991 and is still fully operational. In California, Siemens installed over 1,100 turbines between 1983 and 1990, with 97% still in operation today. Siemens takes its commitment to reliability seriously and prides itself on the long lifespan that its turbines have demonstrated.

No compromise on reliability

SWT-2.3-101: Newest member of the extremely reliable product family

Designed for life

Siemens turbines are designed to last. The robust design of the SWT-2.3-101 allows for trouble-free output throughout the complete lifecycle of the turbine.

The blades are made of fiberglass-reinforced epoxy in Siemens' proprietary IntegralBlade® manufacturing process. The blades are cast in one piece in a closed process, which eliminates the traditional weaknesses found at glue joints in other manufacturers' blades. Like the turbine itself, the blades are designed to last.

Climate control within the turbine protects vital equipment from the outside environment. The turbine also offers controlled-wear strategies for critical components, which results in a further reduction of maintenance costs.

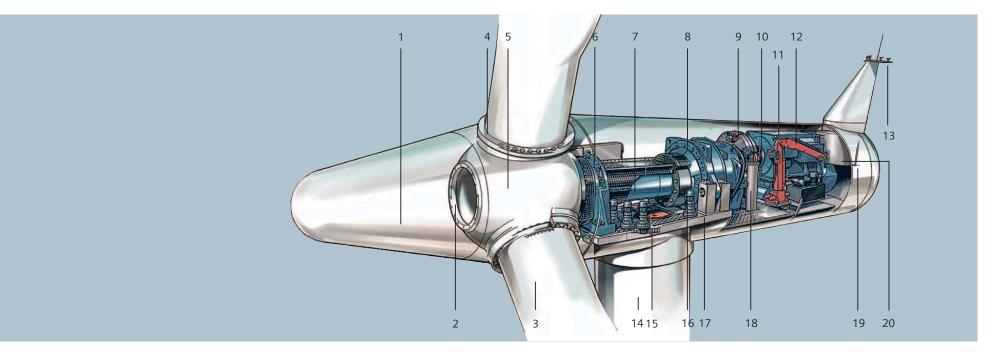
Safety firs

Safety is at the heart of all Siemens operations. From production to installation, operation and service, Siemens strives to set the standard in safety.

The fail-to-safe capabilities within a turbine, combined with Siemens' superior lightning protection system, are designed to enhance security for the turbine.

Advanced operations support

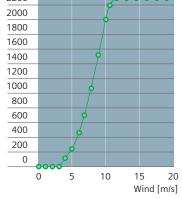
Given the logistical challenges associated with servicing wind farms, Siemens has equipped its turbines with a Turbine Condition Monitoring (TCM) system that reduces the need for on-site servicing.


Continuous monitoring of turbines allows for the discovery of small faults before they become major problems.

The TCM system continuously checks the external and internal condition of the wind turbine. Twenty-four hours a day, seven days a week precise measurements are taken of vibrations in the gearbox, the generator and the main shaft bearings. The system instantly detects deviations from normal operating conditions.

Using the knowledge gained from monitoring thousands of turbines over the years, Siemens' experts are exceptionally skilled at analyzing and predicting faults within a turbine. This allows Siemens to proactively plan the service and maintenance of the turbines as each fault can be categorized and prioritized based on the severity of the fault. Siemens can then determine the most appropriate course of action to keep the turbine running at its best.

Technical specifications


Rotor	
Diameter Swept area Rotor speed Power regulation	101 m 8,000 m² 6-16 rpm Pitch regulation with variable speed
Blades	
Type Length	B49 49 m
Aerodynamic brake	
Type Activation	Full-span pitching Active, hydraulic
Transmission system	
Gearbox type Gearbox ratio Gearbox oil filtering Gearbox cooling Oil volume	3-stage planetary/helical 1:91 Inline and offline Separate oil cooler Approximately 400 l
Mechanical brake	
Туре	Hydraulic disc brake

Generator	
Type Nominal power Voltage Cooling system	Asynchronous 2,300 kW 690 V Integrated heat exchanger
Yaw system	
Туре	Active
Monitoring system	
SCADA system Remote control	WebWPS Full turbine control
Tower	
Type	Cylindrical and/or tapered tubular
Hub height	80 m or site-specific
, ,	
Hub height	
Operational data Cut-in wind speed Rated power at Cut-out wind speed	3-4 m/s 12-13 m/s 25 m/s 55 m/s (standard version)

Sales power curve

The calculated power curve data are valid for standard conditions of 15 degrees Celsius air temperature, 1013 hPa air pressure and 1.225 kg/m³ air density, clean rotor blades and horizontal, undisturbed air flow. The calculated curve data are preliminary.

2200 2000

Nacelle arrangement

_				
<u> </u>	nı	nı	nе	r

2. Spinner bracket

3. Blade

4. Pitch bearing

5. Rotor hub

6. Main bearing

7. Main shaft

8. Gearbox

9. Brake disc

10. Coupling

11. Generator

12. Service crane

13. Meteorological sensors

14. Tower

15. Yaw ring

16. Yaw gear

17. Nacelle bedplate

18. Oil filter

19. Canopy

20. Generator fan

6

Document ID: E R WP SP EN-10-0000-0060-01

PE, BSN / 2010.05.05

Conveyed confidentially as a trade secret

SWT-2.221-101 Low Noise, Hub Height 99.5 m Acoustic Emission

Sound Power Levels

The warranted sound power levels are presented with reference to the code IEC 61400-11:2002 with amendment 1 dated 2006-05 based on a hub height of 99.5 m and a roughness length of 1.661 m as described in the IEC code. The sound power levels (Lwa) presented are valid for the corresponding wind speeds referenced to a height of 10 m above ground level.

Wind speed [m/s]	4	5	6	7	8	9	10	11	12	Up to cut-out
Sound Power Level	105.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0

Table 1: Noise emission, Lwa [dB(A) re 1 pW]

Typical Octave Band

Typical, not warranted octave band spectra are tabulated below for 6 and 8 m/s referenced to 10 m height.

Octave band, centre frequency [Hz]	63	125	250	500	1000	2000	4000	8000
Sound Power Level	82.6	93.8	97.0	99.5	99.6	97.1	89.3	84.9

Table 2: Typical octave band for 6 m/s

Octave band, centre frequency [Hz]	63	125	250	500	1000	2000	4000	8000
Sound Power Level	82.4	93.0	96.0	99.8	100.1	96.5	89.6	85.7

Table 3: Typical octave band for 8 m/s

Document ID: E R WP SP EN-10-0000-0074-00

PE, BSN / 2010.06.21

Conveyed confidentially as a trade secret

SWT-2.126-101 Low Noise, Hub Height 99.5 m Acoustic Emission

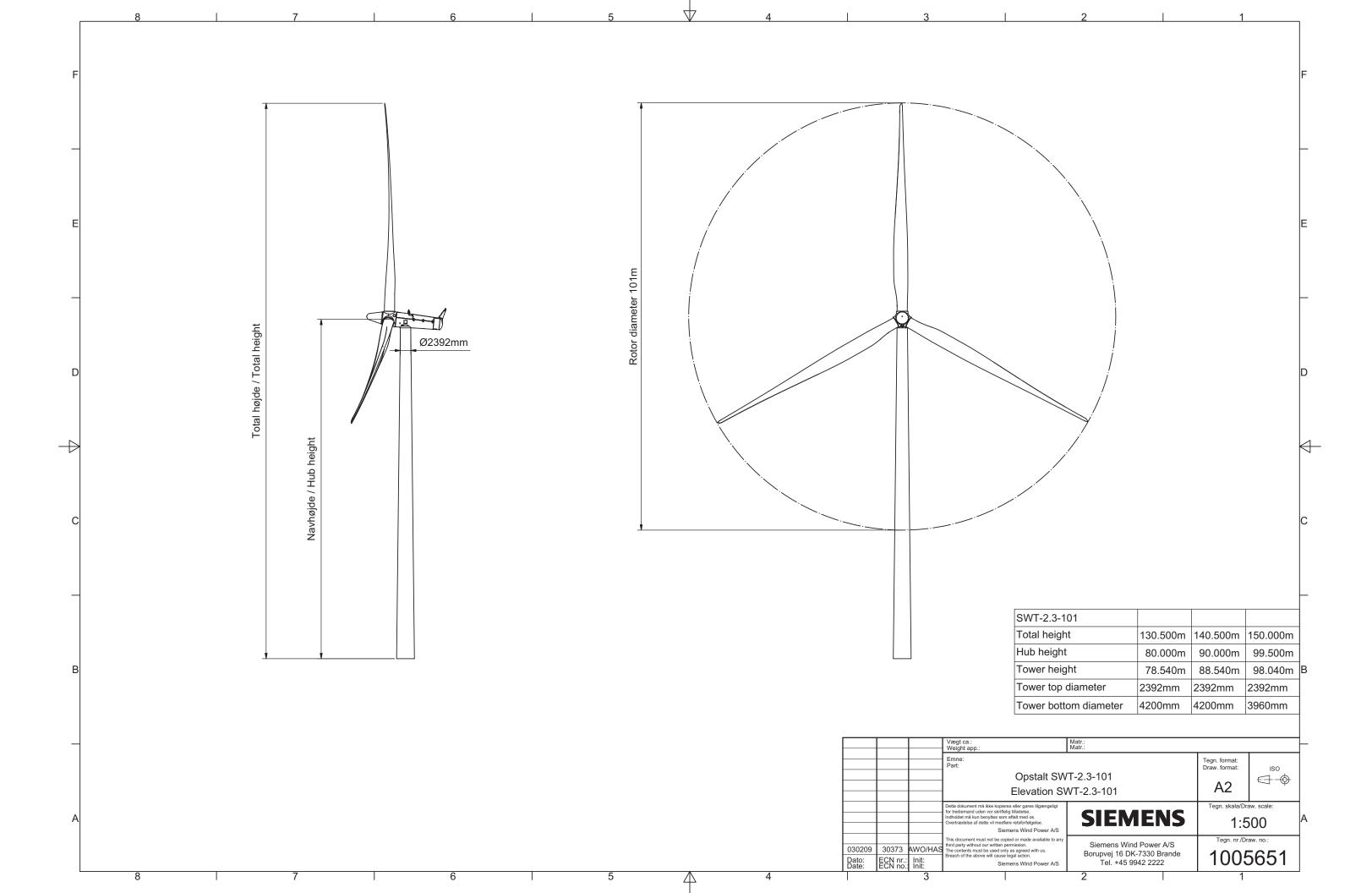
Sound Power Levels

The warranted sound power levels are presented with reference to the code IEC 61400-11:2002 with amendment 1 dated 2006-05 based on a hub height of 99.5 m and a roughness length of 1.800 m as described in the IEC code. The sound power levels (Lwa) presented are valid for the corresponding wind speeds referenced to a height of 10 m above ground level.

Wind speed [m/s]	4	5	6	7	8	9	10	11	12	Up to cut-out
Sound Power Level	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0	104.0

Table 1: Noise emission, Lwa [dB(A) re 1 pW]

Typical Octave Band


Typical, not warranted octave band spectra are tabulated below for 6 and 8 m/s referenced to 10 m height.

Octave band, centre frequency [Hz]	63	125	250	500	1000	2000	4000	8000
Sound Power Level	83.1	94.1	96.6	97.8	97.9	96.5	88.4	84.0

Table 2: Typical octave band for 6 m/s

Octave band, centre frequency [Hz]	63	125	250	500	1000	2000	4000	8000
Sound Power Level	82.2	92.5	94.8	98.5	99.1	95.5	89.0	85.1

Table 3: Typical octave band for 8 m/s

