GRAND RENEWABLE ENERGY PARK
PROPERTY LINE SETBACK ASSESSMENT
REPORT

File No. 160960577
July 2011

Prepared for:

Samsung Renewable Energy Inc.
55 Standish Court
Mississauga, ON L5R 4B2

Prepared by:

Stantec Consulting Ltd.
Suite 1 – 70 Southgate Drive
Guelph, Ontario N1G 4P5
Executive Summary

Samsung C&T (Samsung), Korea Power Electric Corporation (KEPCO) and Pattern Energy (Pattern) are proposing to develop, construct, and operate the Grand Renewable Energy Park (the “Project”) in response to the Government of Ontario’s initiative to promote the development of renewable electricity in the Province. Together, these companies (referred to herein as “SPK”) will be involved in the development of the first phase of the energy cluster development.

The Project is proposed within the County of Haldimand and is generally bounded by Townline Road to the north, Haldimand Road 20 to the west, the Grand River to the east and Lake Erie to the south. It consists of a 151.1 MW (nameplate capacity) wind project, a 100 MW (nameplate capacity) solar project located on privately owned and Ontario Realty Corporation (ORC) managed lands and a transmission line to convey electricity to the existing power grid.

The basic components of the Project include 67 wind turbines, approximately 425,000 photovoltaic (PV) solar panels installed on fixed ground-mounted racking structures organized into 100-1 MW solar modules, a collector sub-station, interconnect station and Operations and Maintenance building, temporary storage and staging areas, approximately 20 km of 230 kV transmission lines along Haldimand Road 20, approximately 82 km of new overhead and/or underground 34.5 kV collector lines along public roads, approximately 48 km of new underground collector lines along turbine access roads, approximately 45 km of turbine access roads and 40 km of solar panel maintenance roads.

SPK has retained Stantec Consulting Ltd. (Stantec) to prepare a Renewable Energy Approval (REA) application, as required under Ontario Regulation 359/09 - Renewable Energy Approvals under Part V.0.1 of the Act of the Environmental Protection Act (O. Reg. 359/09). According to subsection 6(3) of O. Reg. 359/09, the wind component of the Project is classified as a Class 4 Wind Facility and the solar component of the Project is classified as a Class 3 Solar Facility. This Draft Property Line Setback Assessment Report is one component of the REA application for the Project, and has been prepared in accordance with O. Reg. 359/09, the Ontario Ministry of Natural Resources’ (MNR’s) Approval and Permitting Requirements Document for Renewable Energy Projects (September 2009).

The following table summarizes the documentation requirements as specified under O. Reg. 359/09.
Table E.1: Property Line Setback Assessment Report Requirements: O. Reg. 359/09

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Completed</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>As part of an application for the issues of a renewable energy approval or a certificate of approval in respect of the construction, installation or expansion of the wind turbine, the person who is constructing, installing or expanding the wind turbine submits a written assessment,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Demonstrating that the proposed location of the wind turbine will not result in adverse impacts on nearby business, infrastructure, properties or land use activities, and</td>
<td>✔</td>
<td>Section 2.0, Attachment B</td>
</tr>
<tr>
<td>2. Describing any preventative measures that are required to be implemented to address the possibility of any adverse impacts.</td>
<td>✔</td>
<td>Section 2.0, Attachment B</td>
</tr>
</tbody>
</table>
Table of Contents

1.0 INTRODUCTION .. 1.1
1.1 PROJECT OVERVIEW .. 1.1
1.2 REPORT REQUIREMENTS ... 1.1

2.0 SUMMARY OF PROPERTY LINE SETBACK ANALYSIS .. 2.1
2.1 INFRASTRUCTURE ... 2.1
2.2 LAND USE AND BUSINESSES ... 2.1
2.3 HEDGEROWS .. 2.2
2.4 WOODLOTS ... 2.2
2.5 WATERCOURSES ... 2.3

3.0 CLOSURE .. 3.1

List of Tables

Table E.1: Property Line Setback Assessment Report Requirements: O.Reg. 359/09E.2

List of Attachments

Attachment A Figures: Individual Turbine Locations and Property Line Setbacks
Attachment B Individual Property Line Setback Assessments
1.0 Introduction

1.1 PROJECT OVERVIEW

Samsung C&T (Samsung), Korea Power Electric Corporation (KEPCO) and Pattern Energy (Pattern) are proposing to develop, construct, and operate the Grand Renewable Energy Park (the “Project”) in response to the Government of Ontario’s initiative to promote the development of renewable electricity in the Province. Together, these companies (referred to herein as “SPK”) will be involved in the development of the first phase of the energy cluster development.

The Project is proposed within the County of Haldimand and is generally bounded by Townline Road to the north, Haldimand Road 20 to the west, the Grand River to the east and Lake Erie to the south. It consists of a 151.1 MW (nameplate capacity) wind project, a 100 MW (nameplate capacity) solar project located on privately owned and Ontario Realty Corporation (ORC) managed lands and a transmission line to convey electricity to the existing power grid.

The basic components of the Project include 67 wind turbines, approximately 425,000 photovoltaic (PV) solar panels installed on fixed ground-mounted racking structures organized into 100-1 MW solar modules, a collector sub-station, interconnect station and Operations and Maintenance building, temporary storage and staging areas, approximately 20 km of 230 kV transmission lines along Haldimand Road 20, approximately 82 km of new overhead and/or underground 34.5 kV collector lines along public roads, approximately 48 km of new underground collector lines along turbine access roads, approximately 45 km of turbine access roads and 40 km of solar panel maintenance roads.

SPK has retained Stantec Consulting Ltd. (Stantec) to prepare a Renewable Energy Approval (REA) application, as required under Ontario Regulation 359/09 - Renewable Energy Approvals under Part V.0.1 of the Act of the Environmental Protection Act (O. Reg. 359/09). According to subsection 6(3) of O. Reg. 359/09, the wind component of the Project is classified as a Class 4 Wind Facility and the solar component of the Project is classified as a Class 3 Solar Facility. This Draft Property Line Setback Assessment Report is one component of the REA application for the Project, and has been prepared in accordance with O. Reg. 359/09, the Ontario Ministry of Natural Resources’ (MNR’s) Approval and Permitting Requirements Document (APRD) for Renewable Energy Projects (September 2009).

1.2 REPORT REQUIREMENTS

The purpose of the Property Line Setback Assessment Report is to provide a review of potential adverse impacts and preventative measures for wind turbines located within the prescribed setback from non-participating parcels of land.
Of the 67 potential turbine sites being assessed for the Project all of the proposed turbine sites meet the minimum setback requirement of at least 550 metres from the nearest noise receptor. None of the proposed turbine sites are located less than the length of the turbine blades plus 10 metres (i.e. 59 metres) from a non-participating property line. However 21 are located closer to a non-participating property line than the height of the turbine (100 metres).

For those 21 turbines, in accordance with Section 53 of O.Reg 359/09, this report has been prepared to:

- Demonstrate that the proposed location of the wind turbine will not result in adverse impacts on nearby business, infrastructure, properties or land use activities; and

- Describe any preventative measures that are required to be implemented to address the possibility of any adverse impacts.
2.0 Summary of Property Line Setback Analysis

This section summarizes the features over which Project turbine locations overlap the 100 m setback, potential adverse impacts on those features, and preventative measures to address potential adverse impacts. Mapping of each potential turbine location analyzed is provided in Attachment A.

The detailed analysis for each turbine, including the distance of each potential turbine site from the non-participating property line, and the distance of overlap, is provided in Attachment B.

2.1 INFRASTRUCTURE

Description of Features within Overlap

No structures such as barns, storage units, or receptors are present. Turbine 15 overlaps with the right-of-way associated with Aikens Road (an unimproved road), however the overlap does not extend over the actual road and only the right-of-way. Details regarding the distance of overlap are provided in Attachment B.

Potential Adverse Impacts

In the unlikely event of complete turbine collapse in the direction of the road, the turbine may land within the road right-of-way.

Preventative Measures

Turbine 15 meets the setback distance from public road right-of-ways, 59 m, as prescribed in s. 53 of O. Reg. 359/09. In addition, the turbine would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain automatic shutdown mechanisms in instances such as extreme weather or malfunction. All of these measures are standard best practices detailed in the REA documents, and no additional preventative measures are required.

2.2 LAND USE AND BUSINESSES

Description of Features within Overlap

Sixteen turbines have setback overlaps with agricultural cash crop land. Details regarding the specific turbines, and the overlap distance, are provided in Attachment B.

Potential Adverse Impacts

Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.
Preventative Measures

The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain automatic shutdown mechanisms in instances such as extreme weather. All of these measures are standard best practices detailed in the REA documents. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by the Project owner for any crop damage, and measures are outlined in the Renewable Energy Application documents (i.e. Construction Plan Report) to mitigate soil compaction. Given the above measures, no additional preventative measures are required.

2.3 HEDGEROWS

Description of Features within Overlap

Eleven turbines have setback overlaps with hedgerows. Details regarding the specific turbines, and the overlap distance, are provided in Attachment B.

Potential Adverse Impacts

Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife, may occur in the unlikely event of turbine collapse.

Preventative Measures

The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain automatic shutdown mechanisms in instances such as extreme weather. All of these measures are standard best practices detailed in the REA documents. Additional mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents. Given the above measures, no additional preventative measures are required for the changes in setback.

2.4 WOODLOTS

Description of Features within Overlap

Nine turbines have setback overlaps with woodlots. Details regarding the specific turbines, and the overlap distance, are provided in Attachment B.

Potential Adverse Impacts

Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.
Preventative Measures

The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain automatic shutdown mechanisms in instances such as extreme weather. All of these measures are standard best practices detailed in the REA documents. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents. Given the above measures, no additional preventative measures are required for the changes in setback.

2.5 WATERCOURSES

Description of Features within Overlap

No turbine setbacks overlap with a watercourse.

Potential Adverse Impacts

There are no potential adverse impacts.

Preventative Measures

No preventative measures are required.
3.0 Closure

This report has been prepared by Stantec for the sole benefit of SPK, and may not be used by any third party without the express written consent of SPK. The data presented in this report are in accordance with Stantec’s understanding of the Project as it was presented at the time of reporting.

STANTEC CONSULTING LTD.

Rob Nadolny, B.Sc. Hons., CPT
Senior Project Manager

Mark Kozak, B.E.S., Dipl. EA
Project Manager
Attachment A

Figures: Individual Turbine Locations and Property Line Setbacks
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Legend
- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
- Property Line Assessment - T15
- Client/Project: SAMSUNG C&T
- GRAND RENEWABLE ENERGY PARK
- Figure No. 160960577
- DRAFT
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend
- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Client/Project
SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.
DRAFT

Title
PROPERTY LINE ASSESSMENT - T18
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend
- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Client/Project
SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.
DRAFT
Title
PROPERTY LINE ASSESSMENT - T43

January 2011
160960577
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Client/Project
SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.
DRAFT

Title
PROPERTY LINE ASSESSMENT - T48
Legend
- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Client/Project
SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.
DRAFT

Title
PROPERTY LINE ASSESSMENT - T58

Legend
- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes
Legend
- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Client/Project
SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.
DRAFT

Title
PROPERTY LINE ASSESSMENT - T65

Client/Project

SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.

DRAFT

Title

PROPERTY LINE
ASSESSMENT - T66
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Client/Project
SAMSUNG C&T
GRAND RENEWABLE ENERGY PARK

Figure No.
DRAFT

Title
PROPERTY LINE ASSESSMENT - T67
Legend

- Proposed Turbine Location
- Turbine 59m Buffer
- Turbine 100m Buffer
- Access Road
- Underground Collector Line
- Property Line

Notes

Attachment B

Individual Property Line Setback Assessments
<table>
<thead>
<tr>
<th>Turbine ID</th>
<th>Distance to Property Line (m)</th>
<th>Distance of Overlap (m)</th>
<th>Features Within Overlap</th>
<th>Potential Adverse Impacts</th>
<th>Preventative Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>69</td>
<td>31</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>1</td>
<td>Infrastructure:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td>20</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse. Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>97</td>
<td>3</td>
<td>Infrastructure:</td>
<td>In the unlikely event of complete turbine collapse in the direction of the road, the turbine may land within the road right-of-way.</td>
<td>The turbine meets the setback distance from public road rights of way, 59 metres, as prescribed in s.53 of O. Reg. 359/09. The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>82</td>
<td>18</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment B: Property Line Assessment Summary

<table>
<thead>
<tr>
<th>Turbine ID</th>
<th>Distance to Property Line (m)</th>
<th>Distance of Overlap (m)</th>
<th>Features Within Overlap</th>
<th>Potential Adverse Impacts</th>
<th>Preventative Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse or malfunction.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>18</td>
<td>87</td>
<td>13</td>
<td>Infrastructure:</td>
<td>Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>90</td>
<td>10</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>61</td>
<td>39</td>
<td>Infrastructure:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>64</td>
<td>36</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td>Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment B: Property Line Assessment Summary

<table>
<thead>
<tr>
<th>Turbine ID</th>
<th>Distance to Property Line (m)</th>
<th>Distance of Overlap (m)</th>
<th>Features Within Overlap</th>
<th>Potential Adverse Impacts</th>
<th>Preventative Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>77</td>
<td>23</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>30</td>
<td>67</td>
<td>33</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>36</td>
<td>59</td>
<td>41</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>41</td>
<td>71</td>
<td>29</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
</tbody>
</table>
Attachment B: Property Line Assessment Summary

<table>
<thead>
<tr>
<th>Turbine ID</th>
<th>Distance to Property Line (m)</th>
<th>Distance of Overlap (m)</th>
<th>Features Within Overlap</th>
<th>Potential Adverse Impacts</th>
<th>Preventative Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>59</td>
<td>41</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td>Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>61</td>
<td>39</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td>Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>60</td>
<td>40</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td>Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>61</td>
<td>39</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td>Adverse impacts to hedgerows, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td></td>
</tr>
</tbody>
</table>
Attachment B: Property Line Assessment Summary

<table>
<thead>
<tr>
<th>Turbine ID</th>
<th>Distance to Property Line (m)</th>
<th>Distance of Overlap (m)</th>
<th>Features Within Overlap</th>
<th>Potential Adverse Impacts</th>
<th>Preventative Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>60</td>
<td>40</td>
<td>Watercourses:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td>Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>34</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>66</td>
<td>81</td>
<td>19</td>
<td>Infrastructure:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>67</td>
<td>86</td>
<td>14</td>
<td>Infrastructure:</td>
<td>Adverse impacts to agricultural land, including crop damage and soil compaction, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>68</td>
<td>76</td>
<td>24</td>
<td>Infrastructure:</td>
<td>Adverse impacts to woodlots, including vegetation damage and disturbance to related wildlife habitat, may occur in the unlikely event of turbine collapse.</td>
<td>The turbines would be constructed and designed by professional engineers, undergo regular maintenance and monitoring by operational staff, and contain shutdown mechanisms in instances such as extreme weather or malfunction. In the unlikely event of damage to agricultural land due to turbine collapse, landowners would be compensated by Samsung for any crop damage, and measures are outlined in the REA documents to mitigate soil compaction. Mitigation measures for vegetation, including damage and disturbance to related wildlife habitat, are outlined in the REA documents. Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td>Turbine ID</td>
<td>Distance to Property Line (m)</td>
<td>Distance of Overlap (m)</td>
<td>Features Within Overlap</td>
<td>Potential Adverse Impacts</td>
<td>Preventative Measures</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land Use and Businesses</td>
<td>occur in the unlikely event of turbine collapse.</td>
<td>weather or malfunction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hedgerows:</td>
<td></td>
<td>Additional mitigation measures for woodlots, including vegetation damage and disturbance to related wildlife habitat, are outlined in the REA documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woodlots:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watercourses:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>