

ASSESSMENT REPORT - Project: 17283.01

North Kent Wind 1 LP Phase 2 Acoustic Immission Audit - Part 5 of 5 R3281

Prepared for:

North Kent Wind 1 LP 2050 Derry Road West, 2nd Floor Mississauga, Ontario L5N 0B9

Prepared by:

Mackenzie /Judson

Addie Denison, B.A.Sc., P.Eng.

Payam Ashtiani, B.A.Sc., P.Eng.

25 February 2020

Table of Contents

List	of Tables	4
List	of Figures	4
List	of Appendices	4
1	Introduction	7
2	Facility Description	7
3	Audit Receptor Selection	7
3.1	Receptor Selection Criteria	7
3.1.1	Prevailing Wind Direction	8
3.1.2	Receptor Selection Table	10
4	Audit Measurement Locations	11
4.1	Existing Ambient Environment	11
4.1.1	Wind-Related Ambient Noise	11
4.1.2	Traffic Noise	11
4.1.3	Noise from Local Fauna	11
4.2	Monitoring Location	12
5	Measurement Methodology	12
5.1	Test Equipment	13
5.2	Measurement Parameters	13
6	Assessment Methodology	14
6.1	Data Reduction and Filtering	14
6.2	Manual Exclusion of Data	14
6.3	Exclusion of High-Frequency Data – Ambient Contamination	15

6.4	Wind Gusting	15
6.5	Turbine Power & Wind Direction	15
6.6	Sample Size Requirements	17
6.7	Turbine Operating Conditions	17
6.8	Contribution from Adjacent Wind Facilities	17
7	Sound Level Limits	18
8	Audit Results	18
8.1	Weather Conditions	18
8.2	Wind Direction	18
8.3	Sound Levels	20
9	Discussion	21
9.1	Analysis Methodology	21
9.2	Effect of Filtering	21
10	Assessment of Compliance	21
10.1	Tonality Assessment	21
10.2	Assessment Tables	22
10.3	Assessment of Compliance	23
11	Conclusion	23
12	References	24

List of Tables	
Table 1: I-Audit Receptor Selection Table	10
Table 2: Receptor and Monitor Locations	
Table 3: Equipment Details	
Table 4: MECP Sound Level Limits for Wind Turbines	18
Table 5: General Weather Conditions – Range of Measured Values	18
Table 6: Average Measured Sound Levels at R3281, RAM-I Analysis	
Table 7: Effect of Data Filtering on Measurement Dataset	
Table 8: R3281 Assessment Table – Cumulative Turbine-only Sound Impact	23
List of Figures	
Figure 1 - Historical Wind Roses for NKWPP, filtered for hub-height wind speeds at 10 m/s	
Figure 2: Measured wind rose for R3281 for the Phase 2 I-audit campaign	
Figure 3: R3281 - Measured Sound Levels for Turbine ON and Background vs Win	d
Speed	20
List of Appendices Appendix A – Location Details Figure A.1 – Site Plan Figure A.2 – Monitor and Receptor Location – R3281 Figure A.3 – Site Photo – R3281 to T7 Figure A.4 – Site Photo – R3281 to Receptor	
Appendix B – Full Receptor Selection Table	
Appendix C – R3281 Supplementary Wind Roses based on Assessment Data Appendix C.1 – Total Noise Appendix C.2 – Background Noise	
Appendix D – Statement from Operator	
Appendix E – Summary of Tonality Assessment	
Appendix F – Calibration Records	
Appendix G – Power Thresholds for 90% Sound Power	

Appendix H – I-Audit Checklist

Revision History

Version	Description	Author	Reviewed	Date
1	Initial Report	MJ	MAD	February 25, 2020

Important Notice and Disclaimer

This report was prepared by Aercoustics Engineering Limited (Aercoustics) solely for the client identified above and is to be used exclusively for the purposes set out in the report. The material in this report reflects the judgment of Aercoustics based on information available to them at the time of preparation. Unless manifestly incorrect, Aercoustics assumes information provided by others is accurate. Changed conditions or information occurring or becoming known after the date of this report could affect the results and conclusions presented. Unless otherwise required by law or regulation, this report shall not be shared with any Third Party without the express written consent of Aercoustics. Aercoustics accepts no responsibility for damages, if any, suffered by any Third Party which makes use of the results and conclusions presented in this report.

Executive Summary

Aercoustics Engineering Limited ("Aercoustics") has been retained by North Kent Wind 1 LP to complete the acoustic immission audit requirements outlined in the Renewable Energy Approval ("REA") for the North Kent Wind Farm ("NKWPP"). NKWPP operates under REA #5272-A9FHRL, issued on June 29, 2016 [1].

As per the REA, five (5) measurement locations are required. Individual reports will be issued for each of the five measurement locations; This report summarises the results of Phase 2 of the I-audit testing at Receptor R3281.

The monitoring near receptor R3281 spanned the following dates:

Location	Monitoring Start Date	Monitoring End Date	Monitoring Duration (weeks)
R3281	September 25, 2019	January 25, 2020	17.5

The audit has been completed as per the methodology outlined in Parts D and E5.5 RAM-I (Revised Assessment Methodology) of the "MECP Compliance Protocol for Wind Turbine Noise" (Updated: April 21, 2017) [2].

Based on the results presented in Section 10.2 of this report, the cumulative sound impact calculated at R3281 complies with the MECP sound level limits at all wind bins having sufficient data for assessment.

1 Introduction

Aercoustics Engineering Limited ("Aercoustics") has been retained by North Kent Wind 1 L.P. to complete the immission audit ("I-audit") requirement outlined in Section E of the Renewable Energy Approval ("REA") for the North Kent 1 Wind Power Project ("NKWPP"). NKWPP operates under REA #5272-A9FHRL, issued on June 29, 2016 [1]. Measurements were conducted per the Compliance Protocol for Wind Turbine Noise (the "Protocol") [2]. As per the REA, five (5) measurement locations are required. Individual reports will be issued for each of the five measurement locations; This report summarises the results of Phase 2 of the I-audit testing at Receptor R3281.

2 Facility Description

The North Kent 1 Wind Power Project is located in Chatham-Kent, Ontario. The site is bound by Corktown Line to the north, Pioneer Line to the south, Bear Line Rd to the west, and Centre Side Road to the east.

The NKWPP consists of 34 Siemens SWT-113 wind turbines for power generation, with a total nameplate capacity of 100 MW. Each turbine has a hub height of 99.5 meters, a rotor diameter of 113 meters and an individual nameplate capacity of either 2.772 MW, 2.942 MW, or 3.2 MW. The facility operates 24 hours per day, 7 days per week. A Site Plan of the facility and the surrounding area are provided in Appendix A.1.

There are two wind facilities within 10 kilometres of the NKWPP: East Lake St. Clair Wind ("ELSC") and Marsh Line Wind Farm ("Marsh Line"). With respect to the five audit measurement locations, the nearest ELSC turbine is Turbine T138, 2.6 km to the west of monitor R3214. The nearest Marsh Line turbine is Turbine T5, 4.8 km to the south west of monitor R3214.

3 Audit Receptor Selection

As per Section E.1(2) of the NKWPP REA, five receptor¹ locations were chosen to execute both phases of the I-audit: R3214, R3099, V6202, R3281 and R3408. Monitoring equipment was erected near each of these receptors. This report addresses the measurements conducted at R3281 between September 25, 2019 and January 25, 2020.

3.1 Receptor Selection Criteria

Receptor selection criteria are outlined in REA Section E1 and paraphrased below. "Predicted noise impact" refers to the predicted cumulative impact using the sound model

¹ In this report, the term "receptor" refers to the Points of Reception outlined in the REA. The term "monitor" refers to the location of the measurement equipment used to assess the worst-case impact at the associated receptor.

outlined in the noise assessment report [3] (Dokouzian, 2016)², updated to only include the turbines that were constructed. "Primary Turbine" refers to the turbine having the highest predicted impact at a given receptor location. "Downwind" refers to the direction from monitor to primary turbine being within +/-45° of the direction of the prevailing winds.

E1(3): - Selected receptors should have the highest possible predicted noise impacts

- Selected receptors should be in the direction of the prevailing winds

During the receptor selection process, North Kent Wind 1 consulted with the Ministry of the Environment, Conservation and Parks ("MECP") District and Approvals branches regarding the inclusion of a complaint location in the I-Audit. It was agreed upon by the MECP that Receptor R3408 could be included as one of the 5 receptor locations, despite it not fulfilling the specific selection criteria in the REA. The MECP was also consulted regarding the specific location of the monitoring equipment for R3408. Approval regarding this measurement location was confirmed in an email from the MECP on December 6, 2018, which also stipulated that for this location both the Crosswind and Downwind conditions should be included in the final report.

In addition to the item above, the MECP was also consulted regarding the selection of the remaining four receptors in accordance with the methodology outlined in the REA and the Protocol. During this consultation, the MECP indicated that three of the locations initially selected were too close to each other and requested that R3281 be included in the place of the originally selected V6322. This specific guidance was received in an email from the MECP on January 30, 2019.

The receptors chosen for the NKWPP I-audit are R3214, R3099, V6202, R3281 and R3408. All receptors except R3408 are situated downwind with respect to the prevailing wind direction. Further details regarding the monitoring position are provided in Section 4.2.

3.1.1 Prevailing Wind Direction

The prevailing wind direction used for receptor selection was determined using historical weather data for the site. This data was filtered to isolate for the conditions during which the facility would generate over 85% power, to match the conditions required to fulfill the filtering requirements of the Protocol. A wind rose showing the historical wind direction at the site is included Figure 1. The predominant wind direction is southwest, specifically 235°.

² It is noted that the noise assessment report in [3] included 45 turbines, but only 34 turbines were constructed. As such, the receptor selections for the I-audit measurements in this report were conducted using the predicted sound impact of 34 turbines (as-built), modelled by DNV-GL.

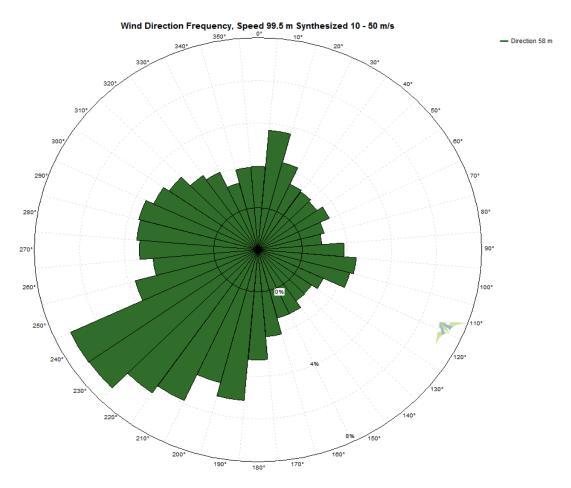


Figure 1 - Historical Wind Roses for NKWPP, filtered for hub-height wind speeds above 10 m/s

3.1.2 Receptor Selection Table

Receptors that are participants of NKWPP or that are not located in the predominant downwind direction from the closest turbine were automatically excluded during the receptor selection process, in accordance with the guidance in the NKWPP REA and the Protocol. Receptors excluded for other reasons are summarized in Table 1 below, along with the five locations that were selected. A full summary of the results of the receptor selection process is included in Appendix B. Details regarding the land access permission activities for this project are available upon request.

Table 1: I-Audit Receptor Selection Table

Table '	Table 1: I-Audit Receptor Selection Table						
SPL Rank	Point of Reception ID	Height (m)	Distance to Nearest Turbine (m)	Nearest Turbine	Calculated Sound Level (dBA) ¹	Wind Direction ²	Notes
*	R3408	1.5	713	Т3	36.7	cw	Selected – This receptor has been requested by the district office to be included in the audit
11	V6322	4.5	550	T19	39.6	DW	Excluded – Exclusion advised by the MECP, since two other proposed measurement locations (R3099, R3214) are in close proximity to this location (cluster of receptors)
18	R3381	4.5	605	T30	39.5	DW	Excluded – Area surrounding receptor is heavily forested. Locations sufficiently set back from trees will place the monitor significantly closer to the turbine, or into a crosswind position.
31	R3159	4.5	605	T19	39.1	DW	Excluded – See comment for V6322 (rank 11)
32	V6216	4.5	565	T7	39.1	DW	Denied Access – Resident was not interested in participating in the study
33	R3149	4.5	600	T19	39.1	DW	Excluded – See comment for V6322 (rank 11)
36	R3099	4.5	554	T51	39.0	DW	Selected
45	V6381	4.5	621	T19	38.9	DW	Excluded – Located too close to receptor already selected (R3099)
54	R3214	4.5	751	T23	38.8	DW	Selected
57	V6202	4.5	620	Т6	38.7	DW	Selected – Monitor erected in adjacent property due to land access restriction on resident's property.
62	V6313	4.5	659	T19	38.6	DW	Excluded – Located too close to receptor already selected (R3099)
71	R3170	4.5	690	T19	38.5	DW	Excluded – Located to close to receptor already selected (R3099)
79	R3398	1.5	566	T52	38.4	DW	Denied Access – Land owner indicated that he was no longer interested in allowing land access
83	R3281	7.5	632	T7	38.3	DW	Selected – was originally listed as Optional Alternative – MECP requested that this location be included

Sound Pressure Level at the receptor location determined using an as-built sound model created by DNV-GL

² Relative to the prevailing wind direction, +/-45°

4 Audit Measurement Locations

The following section describes the measurement location used for R3281 and provides context to the ambient acoustic environment observed at the NKWPP.

4.1 Existing Ambient Environment

The ambient acoustical environment measured at R3281 was observed to be dominated by wind-related noise, which is described below.

4.1.1 Wind-Related Ambient Noise

Wind-related noise is comprised of two sources: self-noise and foliage noise. Self-noise results from wind blowing over objects associated with the monitoring equipment and is similar to what one might observe when wind blows over the ear on a windy day. Self-noise is present in all monitoring campaigns at high wind speeds. Conversely, foliage noise depends on the vegetation in the area surrounding the monitor. Measures to reduce the impact of wind-related noise were employed at the monitor location, as prescribed in the Protocol; a secondary wind screen was installed to reduce self-noise, and the monitoring equipment was located away from trees as much as practically possible.

Monitor R3281 was located in a field of soybean crops and is 66 m upwind from the nearest large trees. The soybean crop are close to the ground and was not observed to affect the measured sound levels.

Despite the presence of nearby foliage, the influence of foliage noise on the measured sound levels was observed to be relatively minimal at lower wind speeds when compared to monitors more closely situated to crops or tall trees. Measurement data at higher wind speeds is expected to be impacted by both foliage noise as well as wind self-noise.

4.1.2 Traffic Noise

Caledonia Road, located 40 meters northeast of R3281, was observed to be a significant ambient noise source at this location, both through observations during site visits and listening analysis of the measured data. It was noted that the contribution of the noise from Caledonia Road varied with the time of night. Most of this transient contamination was filtered out, either manually by listening analysis or automatically by the transient (LAeq-L90) filter, described in Section 6.1. Additionally, a time-based filter was employed at this location to limit the data used in the analysis to 10 pm to 5 am. This was done to isolate for periods with less traffic activity on Caledonia Road, and therefore less ambient contamination. Assessing the wind farm noise impact during periods of (comparatively) minimal ambient impact represents a conservative approach. The effect of any residual traffic noise in this dataset is expected to be minimal.

4.1.3 Noise from Local Fauna

Noise from fauna refers to noise typically arising from the activity of insects, birds, livestock, or dogs. Noise of this nature may be concentrated at high frequencies (such as

crickets chirping) or limited to short-term events (such as dogs barking). Noise from fauna is considered extraneous noise.

Cricket noise was present at the monitor location and was especially prominent in the early fall months from September to November. There were no other significant sources of fauna noise identified at the monitor location.

Instances of transient noise from fauna were filtered out either manually by listening analysis or automatically by the transient (LA_{eq} - L_{90}) filter, described in Section 6.1. Periods of steady, high-frequency extraneous noise from fauna were filtered out by excluding high-frequency $1/3^{rd}$ -octave data, as described in Section 6.3.

4.2 Monitoring Location

Table 2 provides specific details of the receptor and monitoring equipment locations. The immediate surroundings of the monitor location are also described below. Photos of the surrounding area and measurement setup are included in Appendix A.3 and A.4.

Table 2: Receptor and Monitor Locations

. date in the copies and memor income						
Audit Receptor	Measurement Duration	UTM Coordinates [m] (Zone 17T)		Distance to Primary Turbine [m]	Predicted Level (dBA)†	
D2204	September 25,	Receptor	400,193 E 4,706,432 N	632	38.3	
R3281	2019 – January 25, 2020	Monitor	400,064 E 4,706,449 N	613	38.6	

[†] Predicted sound pressure level determined using an as-built sound model created by DNV-GL

The closest turbine to Receptor R3281 is Turbine T7. Monitor R3281 was located roughly 30 meters west of Caledonia Road and 613 meters to the north of Turbine T7. The ground cover between the measurement location and Turbine T23 was a field containing soybean crops. The monitoring equipment was situated approximately 60 meters northwest of a parcel of trees located adjacent to the property of Receptor R3281. This monitor location was chosen to be representative of the impact at R3281, while ensuring a sufficient setback from the extensive foliage surrounding R3281, to minimize the impact on the ambient sound levels at the monitor location. Measured data at higher windspeeds is still expected to be impacted by some foliage noise in addition to wind self-noise.

5 Measurement Methodology

The acoustic audit was conducted at receptor R3281 and spanned from September 25, 2019 to January 25, 2020.

Measurements and data analyses were conducted per the Protocol. Specific details regarding the methodology are presented in this section.

5.1 **Test Equipment**

Measurement equipment used for the I-audit campaign, both acoustic and non-acoustic, is detailed below. Equipment specifications and measurement positions comply with MECP Protocol sections D2 - Instrumentation and D3 - Measurement Procedure, respectively. Each remote monitoring unit is comprised of the following:

- One (1) Type 1 sound level meter, with microphone and pre-amplifier installed at a height of 7.5 meters (consistent with the receptor height for R3281 modelled for Approval purposes), at least 5 meters from any large reflecting surfaces.
- One (1) primary and one (1) secondary windscreen for the microphone. The 1/3 octave band insertion loss of the secondary windscreen has been tested and was accounted for in the measurement analysis.
- One (1) anemometer, installed 10 metres above ground level ("10-m AGL").

The following table lists the specific model and serial numbers for the equipment used during the measurement campaign.

Table 3: Equipment Details

Monitor	Equipment	Make/Model	Serial Number		
	Data Acquisition Card	NI 9234	19A4D82		
	Signal Conditioner	PCB 80E09	33661		
R3281	Microphone/ Pre-Amplifier Pair	PCB 378B02	120586		
	Microphone	PCB 377B02	155523		
	Pre-Amplifier	PCB 426E01	39195		
	Weather Anemometer	Vaisala WXT536	P4830521		

Equipment lab calibration follows the guidance provided in Section D2.3 of the Protocol for sound level meters and acoustic calibrators, and Section 6.3 of the IEC 61400-11 Edition 3.0 standard for weather anemometers.

The measurement chain was field calibrated before, during, and after the measurement campaign using a type 4231 Brüel & Kjær acoustic calibrator. Calibration certificates have been included in Appendix F.

5.2 **Measurement Parameters**

During the measurement campaign, acoustic and weather data were logged simultaneously in one-minute intervals.

Measured acoustic data includes A-weighted overall equivalent sound levels ("LA_{eq}"), 90th percentile statistical levels ("L₉₀")³, and 1/3rd octave band levels between 20 Hz and 10,000

aercoustics.com

³ L₉₀ refers to the sound level that is exceeded for 90% of samples in the measurement interval.

Hz (inclusive). Raw signal recordings were also stored for listening and post-processing. Measured weather data includes average wind direction, wind speed, temperature, relative humidity, and atmospheric pressure. The maximum and minimum wind speed for each one-minute interval was also stored.

To account for the effect of wind speed on the measured sound level, intervals are sorted into integer wind bins based on their measured 10-m AGL wind speeds. Each wind bin ranges from 0.5 m/s below to 0.5 m/s above each integer wind speed (i.e. the 5 m/s wind bin comprises all intervals having average wind speeds between 4.5 m/s and 5.5 m/s).

6 Assessment Methodology

6.1 Data Reduction and Filtering

Data reduction procedures have been employed to remove invalid and extraneous data points from the measured dataset to form a refined assessment dataset. Specific filters are described below.

A measurement interval is excluded if any of the following criteria are <u>not</u> satisfied:

- The interval occurred between 10 pm 5 am.
- No precipitation was detected within 60 minutes before or after the interval
- The ambient temperature was above -20°C
- The measured LA_{eq} was no more than 10 dB greater than the L₉₀ value

Significant extraneous transient events are often detectable by comparing the LA_{eq} with the L_{90} level for the same interval. At this location, if the measured L_{90} differed from the LA_{eq} by more than 10 dB, the interval was automatically excluded. If necessary, listening tests are conducted to identify contaminated intervals not excluded by the filters listed above.

6.2 Manual Exclusion of Data

The application of the filtering methodology outlined in the Protocol and summarized throughout Section 6.1 of this report results in a dataset with significantly less acoustic contamination than is present in the unfiltered dataset. Despite this, however, it has been found that these automatic filters are not always sufficient to remove all contaminated data intervals. In situations where contamination is suspected in the assessment dataset, listening tests are conducted on the audio recordings to confirm and, if possible, to identify the contamination. Intervals containing significant contamination are manually excluded from the assessment data. This follows the guidance from the Protocol to assess sound levels without extraneous ambient noise.

Data are also manually excluded if it is suspected that any of the measurement equipment is not functioning according to its specification, which may occur during extreme weather conditions such as freezing rain.

6.3 Exclusion of High-Frequency Data – Ambient Contamination

Steady acoustical contamination from insects and wind-related noise is present in the measurement data at R3281 at higher acoustical frequencies. Consequently, this high-frequency contamination was removed from the 1/3rd-Octave spectra of each measurement interval, per the guidance provided in Section D5.3 of the Protocol.

The exclusion of this high-frequency data allows for the assessment of measurement intervals which would otherwise be manually invalidated and does so while accounting for the acoustical impact of the relevant wind turbine facilities. The high frequency acoustical contribution from the relevant wind facilities is small – this is because high frequency sound is more easily absorbed by the atmosphere as it propagates across long distances.

The contribution from NKWPP as well as its neighbours at these excluded frequencies was predicted at the monitoring location using the as-built turbine model and was found to be less than 13 dBA at all five (5) monitor locations. This contribution was then added logarithmically to the calculated Turbine-Only sound level at the monitor location

6.4 Wind Gusting

High levels of wind-related noise have been observed during intervals where the maximum measured 10-m AGL wind speed differed greatly from the average value for the same interval. An automatic filter has been applied to remove intervals of gusting at this monitor.

6.5 Turbine Power & Wind Direction

Intervals that pass the filtering criteria listed above are sorted into Total Noise⁴ or Background periods according to the conditions listed below. If neither Total Noise nor Background conditions are met, the data point is excluded.

- **Total Noise:** All facility turbines within 3 km must be rotating and generating power. For monitor R3281 these turbines were:
 - o T06, T07, T12, T28, T30, T31 and T32

⁴ Total Noise refers to the measured sound level with the turbines running prior to the correction for Background sound (i.e. the total sound level of the turbines plus the ambient).

- **Background:** Facility turbines must be parked and not generating power such that the predicted impact at the measurement location is less than 30 dBA. For monitor R3281 these turbines were:
 - o T07, T30 and T315

It is important to note that turbine T06 was non-operational for a portion of the measurement campaign due to a technical issue. The turbine was down for maintenance between September 20, 2019, and November 22, 2019, but was operating normally outside of this period. T06 is located approximately 2.54 km from R3281 and as such must be rotating and generating power to meet Total Noise conditions. The contribution from T06 was predicted at the R3281 monitoring location using the as-built turbine model and was found to be approximately 22 dBA. As a conservative approach, this contribution was added logarithmically to the calculated Turbine-Only sound level for the duration of the monitoring campaign, including periods where T06 was operating normally.

The Protocol also requires additional criteria be met by each Total Noise data point based on the conditions of the nearest turbine to each monitor location. Specifically,

"Only downwind data will be considered in the analysis. With reference to the Turbine location, downwind directions are ±45 degrees from the line of sight between the Turbine and receptor/measurement location." {Section D5.2(4)}

and

"Only data when the turbine's electrical output sound power level is approximately equal to or greater than 85% of its rated electrical power output should be included in the analysis. In addition, the turbine should also be operating at approximately 90% or more of its maximum sound power level; (percentage based on energy/logarithmic calculation)." {Section D5.2(5)}

Based on the E-Audit test results at NKWPP, the project turbines reach 90% of their maximum measured sound power level at a power output significantly below that which corresponds to 85% of the turbine's rated electrical power. Further to this, the power output corresponding to the *maximum* sound power level is also below that which corresponds to 85% of rated electrical power for all three turbine variants at NKWPP. For these reasons, using the 85% turbine power threshold alone will not effectively capture the worst-case impact at NKWPP, which was found to occur at an operating condition which corresponds to a lower power output.

For this reason, the 90% sound power condition has been selected to determine the power threshold corresponding to the worst-case impact from the turbine-type closest to R3281. In this case the closest turbine is T07, with a rated power of 3.2 MW. Based on the E-audit test conducted at T06 [6], the 90% sound power condition for this turbine type is reached at a power output of 1.923 MW. This is the power threshold that has been used for filtering

⁵ Turbines shutdown to satisfy Background criterion for R3281 only

this dataset. Details regarding the measured sound power levels of the NKWPP turbines and the 90% sound power calculations are included in Appendix G.

6.6 Sample Size Requirements

Section D3.8 of the Protocol requires at least 120 Total Noise intervals and 60 Background intervals in a wind bin for that bin to be deemed complete.

RAM-I analysis, described in Section E5.5 of the Protocol, is employed in cases where insufficient data is collected after an extended monitoring campaign lasting 6-weeks or more. The NKWPP Phase 2 campaign lasted longer than 6-weeks at all monitors and therefore RAM-I analysis was applied. The RAM-I methodologies used in this assessment, in addition to those already mentioned are detailed below. Further details regarding the data analysis methodology are provided in Section 9.1.

<u>Section E5.5(1)</u>

The range of wind bins which may be used to assess compliance is expanded to include a minimum of one of the following conditions:

- a. "three (3) of the wind speed bins between 1 and 7 m/s (inclusive), or
- b. two (2) of the wind speed bins between 1 and 4 m/s (inclusive)"

Section E5.5(5)

The RAM-I assessment methodology relaxes the sample size requirements, stating:

"The Ministry may accept a reduced number of data points for each wind speed bin with appropriate justification. [...] The acceptable number of data points will be influenced by the quality of the data (standard deviation)"

The threshold of 60 data points for Total Noise measurements and 30 data points for Background measurements is used in this assessment.

6.7 **Turbine Operating Conditions**

Wind facility SCADA information was provided for the duration of the measurement campaign by the North Kent 1 Wind Power Project. This data was used to verify that the NKWPP wind turbines were operational for Total Noise intervals and parked for Background intervals. The turbine operating conditions were verified by the NKWPP for the duration of the campaign; see Appendix D.

6.8 Contribution from Adjacent Wind Facilities

The nearest wind facility to NKWPP is East Lake St. Clair Wind. The closest ELSC turbine to a monitoring location is Turbine T138, 2.6 km to the west of monitor R3214. At this distance, sound impact from ELSC is considered to be negligible and thus no contributions from adjacent wind facilities were considered in this study.

7 Sound Level Limits

Sound level limits are set by the MECP and vary based on the classification of the surrounding acoustic environment as well as the measured background sound level (if available). The area surrounding the facility has been deemed in the original Noise Assessment Report to be Class III, having exclusion limits based on 10-m AGL wind speed as noted in Table 4 below.

Table 4: MECP Sound Level Limits for Wind Turbines

Wind speed at 10m height [m/s]	MECP Sound level limit [dBA]
≤ 6	40
7	43

Sections D3.5 and D6 of the Protocol state that in wind bins where the measured background sound levels are greater than the applicable exclusion limits, the sound level limit for that wind bin is the background sound level without extraneous noise sources. In effect, the exclusion limits outline the minimum sound level limit by wind bin, with increases in sound level limit permissible if it can be shown through measurements that the existing background sound level is higher than the exclusion limit. Any complete wind bins where the measured background sound level exceeded the exclusion limit are noted in Table 6.

8 Audit Results

Acoustic and weather data measured during the I-audit campaign are summarized in the following section.

8.1 Weather Conditions

General weather conditions observed in the assessment dataset during the Phase 2 I-audit are summarized in Table 5.

Table 5: General Weather Conditions – Range of Measured Values

			10-m AGL			Hub height
		Atmospheric Wind Relative Ten Pressure Speed Humidity [hPa] [m/s] [%]			Temperature [°C]	Wind speed [m/s]
R3281	Minimum	967	0.1	49.0	-12.8	0.1
K3201	Maximum	1020	15.6	94.4	22.9	23.6

8.2 Wind Direction

A wind rose was created for R3281 using the yaw angle from the nearest wind turbine and the wind speeds from the 10-m AGL anemometer. As noted in Section 6.6 of this report, RAM-I methodology is being used, and thus all 10-m AGL wind speeds from 1 m/s to 7 m/s can be used in the assessment.

The wind rose is provided in Figure 2. The distribution of wind directions observed during the measurement campaign roughly agrees with the historical wind rose (see Section 3.1.1), especially considering that the historical wind rose in Figure 1 is based on hubheight wind speeds, and is filtered for 10 m/s and greater. Supplementary wind roses for the specific valid Total Noise and Background datasets are included in Appendix E.

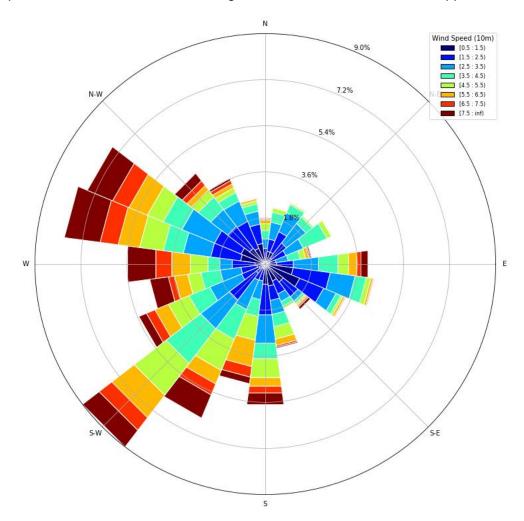


Figure 2: Measured wind rose for R3281 for the Phase 2 I-audit campaign⁶

⁶ The Wind Rose in this figure reflects all measured data across the entirety of the measurement campaign at R3281, as detailed in Table 2. The turbine from which the yaw angle information was taken is T7.

8.3 Sound Levels

Table 6 presents the average measured sound levels at monitor R3281. Results are separated by wind bin into Total Noise and Background periods.

Table 6: Average Measured Sound Levels at R3281, RAM-I Analysis

					I-audit	Wind Bir	ns (m/s)		
Receptor	Period	Measurement Parameter		2	3		5	6	7
		Number of Samples	0	0	103	236	516	452	173
	Total Noise	Average LAeq [dBA]	-	-	40.7	40.5	41.1	43.7	47.3
R3281		Standard Deviation [dB]	-	-	1.4	1.5	1.2	1.3	1.1
N3201	Background	Number of Samples	448	185	37	107	123	84	51
		Average LAeq [dBA]	27.4	29.5	31.3	33.3	37.3	41.8	46.3
		Standard Deviation [dB]	4.3	3.7	2.3	2.1	2.0	1.6	1.5

⁻ Significantly fewer than the minimum data counts outlined in Section 6.6 were attained in this wind bin.

A visualization of the assessment datasets for R3281 is presented in Figure 3 below.

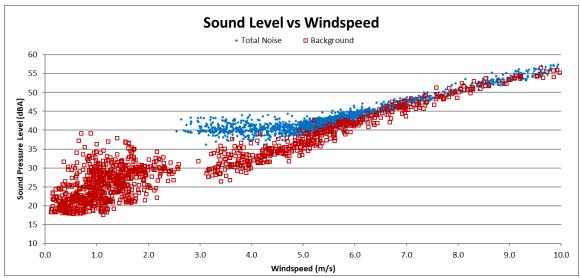


Figure 3: R3281 - Measured Sound Levels for Turbine ON and Background vs Wind Speed

9 Discussion

9.1 Analysis Methodology

Interpretation and discussion of the measured sound levels are provided in this section.

9.2 Effect of Filtering

The measurement data was assessed according to Part D of the Protocol with the incorporation of the RAM-I data reduction methodology per Section E5.5 of the Protocol. The effect of each filter on the measurement datasets, as well as the total portion of measurement data excluded from the assessment data, are summarized in Table 7.

Table 7: Effect of Data Filtering on Measurement Dataset

Data Filter	% Data Excluded
	R3281
Turbine Power Threshold	89%
Wind Direction	69%
Rain	7%
Temperature	0%
Transient Contamination	1%
Excluded from Total Noise	95%

Table 7 illustrates the proportion of measurement time during the campaign that did not meet the criteria for worst-case noise impact at each receptor. Data not excluded by automatic or manual filters are used in the assessment of compliance. It is important to note that the data remaining after these filters are applied represents the times when the turbines were generating high power output in a downwind condition without significant transient contamination or inclement environmental conditions (such as rain or low temperature). In other words, this remaining data represents the portion of time that the immission impact from the facility is at its highest for the given monitor location.

10 Assessment of Compliance

The following section presents an assessment of compliance for the NKWPP based on the results of the Phase 2 Immission Audit.

10.1 **Tonality Assessment**

The tonality analysis results of the Emission audit measurements for T36 [4], T33 [5] and T06 [6] were used as a basis for tones at receptors which were likely to have been generated by the closest turbine rather than an external source.

Based on discussions with North Kent Wind 1 LP. it was determined that to be consistent with Sections 3.8.3 and Section 5.1 of the Compliance protocol, the tonal assessment

should be completed using IEC 61400-11 Ed. 3.0, with modifications to adapt the method to immission measurements and the tonal penalty structure taken from ISO 1996-2:2007 Annex C. Namely, Section 5.1 of the compliance protocol states:

"If a tonal assessment ... indicates a tonal audibility value that exceeds 4 dB, the Ministry will require that a tonal penalty be applied at all Receptors in accordance with the penalties described in Annex C of ISO 1996-2, Reference" (Section D5.1)

For the tonal assessment, narrowband data was acquired and calculated for each 1-minute interval used in the immission analysis and binned by wind speed. Each minute was analysed in order to detect any tones with tonal audibility values greater than -3 dB at any of the assessed frequencies. Similar to the methodology in IEC 61400-11, a tone would have to be present in at least 20% of the valid measurement intervals to be classified as relevant. This reduces the possibility of intermittent tones related to either the unsteady operation of the turbines, or from other contaminating sources, being attributed to the steady state operation of the turbines. The tonal audibility (L_{ta}) for the most prominent tones in each wind bin were then evaluated to determine if a tonal penalty would be applicable. The penalty structure was taken from ISO1996-2 Annex C: namely that the tonal penalty would be a positive number between 0 dB and 6 dB based on the degree of tonal audibility of the worst-case tone. A tonal penalty is calculated as L_{ta} - 4 dB. i.e. a tonal audibility of 6.5 would incur a penalty of 2.5 dBA on the overall Turbine Only level.

A 78 Hz tone was observed at receptor R3281 but was not generally prevalent enough nor prominent enough for a tonal penalty to be applicable. A tonal assessment summary table is provided in Appendix E.

No tonal penalty was found to be applicable at R3281 based on detailed tonal audibility analysis.

10.2 Assessment Tables

Cumulative Turbine-Only sound levels at R3281 are presented in the table below. The cumulative noise impact in the table is calculated using the data presented in Table 6. Wind bins having insufficient data with which to determine the cumulative sound impact are marked with a "-". The signal-to-noise for each complete wind bin is also presented. The *Cumulative Sound Impact* is the difference between the average Total Noise and Background sound levels from Table 6, unless otherwise noted.

Audited Receptor	Wind speed at 10-m AGL [m/s]		2	3	4	5	6	7
R3281	Cumulative Sound Impact - Receptor Location [dBA]	-	-	40	40	39	39	40
	Signal-to-noise [dB]	-	-	9.4	7.2	3.8	1.9 [‡]	0.9‡
Ba	ckground Sound Level [dBA]	27	30	31	33	37	42*	46*
MECP Exclusion Limit [dBA]			40	40	40	40	40	43
	Compliance? (Y/N)	-	-	Yes	Yes	Yes	Yes [‡]	Yes [‡]

- Significantly fewer than the minimum data counts outlined in Section 6.6 were attained in this wind bin.
- * Background sound level is greater than the applicable exclusion limit.
- [‡] Signal-to-noise level less than 3 dB (see Table 6). Increased uncertainty in the determination of the Cumulative Sound Impact.

10.3 Assessment of Compliance

Based on the results presented in Section 10.2, the cumulative sound impact calculated at R3281 complies with the MECP sound level limits at all wind bins having sufficient data for assessment.

11 Conclusion

Aercoustics Engineering Limited has completed the Phase 2 immission audit outlined in Condition E the Renewable Energy Approval #5272-A9FHRL for the North Kent Wind Power Project. Testing was conducted in accordance with the methodology outlined in Part D and Part E of the MECP Compliance Protocol for Wind Turbine Noise. Compliance has been demonstrated at receptor R3281.

12 References

- [1] M. Keyvani, P.Eng., "Renewable Energy Approval #5272-A9FHRL", Ontario Ministry of the Environment, Toronto, ON, June 29, 2016.
- [2] Ministry of the Environment and Climate Change, "Compliance Protocol for Wind Turbine Noise", Ontario Ministry of the Environment, Toronto, ON, April 21, 2017.
- [3] S. Dokouzian, A. Nercessian and A. Danaitis, "North Kent 1 Wind Project Renewable Energy Approval Application Noise Impact Assessment" DNV-GL, Ottawa, ON, May 9, 2016.
- [4] P. Ashtiani, A. Denison and D.E.A. Villanueva, "North Kent Wind 1 LP Turbine T36 IEC 61400-11 Edition 3.0 Measurement Report", Aercoustics Engineering Ltd., Mississauga, ON, 20 March 2019.
- [5] P. Ashtiani, A. Denison and I. Khan, "North Kent Wind 1 LP Turbine T33 IEC 61400-11 Edition 3.0 Measurement Report", Aercoustics Engineering Ltd., Mississauga, ON, 22 March 2019.
- [6] A. Denison and D.E.A. Villanueva, "North Kent Wind 1 LP Turbine T06 IEC 61400-11 Edition 3.0 Measurement Report", Aercoustics Engineering Ltd., Mississauga, ON, 27 March 2019.

Appendix A Location Details

R3281 V6202 T15 R3214 T19 R3099 NKW1_Transformer T38 10 km

Legend

Campaign Receptor

Receptor

— St Clair Road

North Kent Wind Project Boundary

North Kent Turbines

Turbine - Not Built

Turbine - Built

Other Turbines

ELSC Turbines

ML Turbines

Project ID: 17283.01 Drawn by: MJ

Reveiwed by: February 14, 2020

Date: June 10, 2019

Revision: 1

Scale: As Indicated

North Kent Wind Project Phase 2 R3281 I-Audit Report

Appendix A.1

Site Plan Overview

Legend

Noise Monitors Phase 2

Campaign Receptor

Turbine - Built

Claymore Line

Project ID: 17283.01 Drawn by: MJ Reveiwed by: MAD

Date: February 14, 2020 **Revision:** 1

Scale: As Indicated

North Kent Wind Project Phase 2 R3281 I-Audit Report

Appendix A.2

Monitor and Receptor Location

Project ID: 17283.01 Drawn by: MJ **Reveiwed by:** MAD

Date: February 14, 2020 **Revision:** 1

Scale: As Indicated

North Kent Wind Project Phase 2 R3281 I-Audit Report

Appendix A.3

Site Photo - R3281 to T7

Project ID: 17283.01 Drawn by: MJ Reveiwed by: MAD

Date: February 14, 2020 **Revision:** 1

Scale: As Indicated

North Kent Wind Project Phase 2 R3281 I-Audit Report

Appendix A.4

Site Photo - R3281 to Receptor

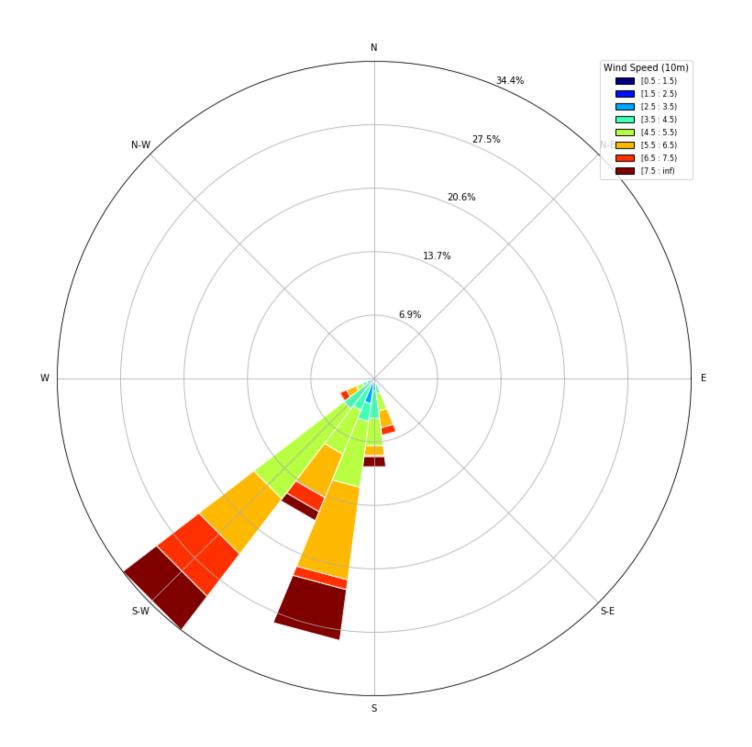
Appendix B Full Receptor Selection Table

Table 1: Receptors Sorted by Sound Level

SPL Rank	Point of Reception	Height (m)	Distance to Nearest Turbine	Nearest Turbine	Calculated Sound Level (dBA)	Wind Direction	Notes
*	R3408	1.5	(m) 713	Т3	36.7	cw	Selected – This receptor has been requested by the district office to be included in the audit
1	V6306	4.5	385	T28	42.3	DW	Participating
2	R3375	4.5	458	T30	41.2	CW	Participating, Crosswind
3	R3372	4.5	436	T5	41.1	UW	Participating, Upwind
4	V6314	4.5	483	T19	40.6	DW	Participating
5	R3539	4.5	518	T21	40.4	CW	Participating, Crosswind
6	V6323	4.5	460	T51	40.1	CW	Participating, Crosswind
7	V6286	4.5	523	T14	39.9	CW	Participating, Crosswind
8	V6008	4.5	504	T4	39.8	CW	Participating, Crosswind
9	R3426	4.5	1312	T34	39.6	UW	Upwind
10	R2998	4.5	458	T39	39.6	DW	Participating
11	V6322	4.5	550	T19	39.6	DW	Excluded – Exclusion advised by the MECP, since two other proposed measurement locations (R3099, R3214) are in close proximity to this location (cluster of receptors)
12	V6325	4.5	551	T23	39.6	CW	Participating, Crosswind
13	R3219	4.5	551	T23	39.5	CW	Crosswind
14	V6300	4.5	551	T30	39.5	CW	Crosswind
15	V6269	4.5	551	T7	39.5	CW	Crosswind
16	R3547	4.5	605	T43	39.5	CW	Crosswind
17	V6038	4.5	1837	T20	39.5	UW	Upwind
18	R3381	4.5	605	T30	39.5	DW	Excluded – Area surrounding receptor is heavily forested. Locations sufficiently set back from trees will place the monitor significantly closer to the turbine, or into a crosswind position.
19	R3544	4.5	660	T43	39.4	CW	Participating, Crosswind

SPL Rank	Point of Reception ID	Height (m)	Distance to Nearest Turbine (m)	Nearest Turbine	Calculated Sound Level (dBA)	Wind Direction	Notes
20	R3352	7.5	573	T5	39.4	CW	Crosswind
21	V6065	4.5	551	T34	39.4	CW	Participating, Crosswind
22	V6289	4.5	566	T27	39.4	CW	Participating, Crosswind
23	V6136	4.5	562	T28	39.3	CW	Crosswind
24	V6061	4.5	618	T33	39.3	CW	Participating, Crosswind
25	V6007	4.5	583	Т3	39.3	CW	Participating, Crosswind
26	R3535	1.5	565	T21	39.3	CW	Participating, Crosswind
27	V6321	4.5	673	T19	39.3	CW	Crosswind
28	V6282	4.5	609	T14	39.2	CW	Crosswind
29	V6277	4.5	579	T49	39.2	CW	Participating, Crosswind
30	V6465	4.5	560	T26	39.2	CW	Participating, Crosswind
31	R3159	4.5	605	T19	39.1	DW	Excluded – See comment for V6322 (rank 11)
32	V6216	4.5	565	Т7	39.1	DW	Denied Access – Resident was not interested in participating in study
33	R3149	4.5	600	T19	39.1	DW	Excluded – See comment for V6322 (rank 11)
34	V6250	4.5	680	T14	39.1	CW	Participating, Crosswind
35	V6299	4.5	543	T15	39.0	CW	Participating, Crosswind
36	R3099	4.5	554	T51	39.0	DW	Selected
37	R3315	4.5	645	T14	39.0	CW	Crosswind
38	V6284	4.5	617	T27	39.0	CW	Crosswind
39	R3423	4.5	576	T28	39.0	CW	Crosswind
40	V6088	4.5	627	T21	38.9	CW	Crosswind
41	R3294	4.5	698	T14	38.9	CW	Crosswind

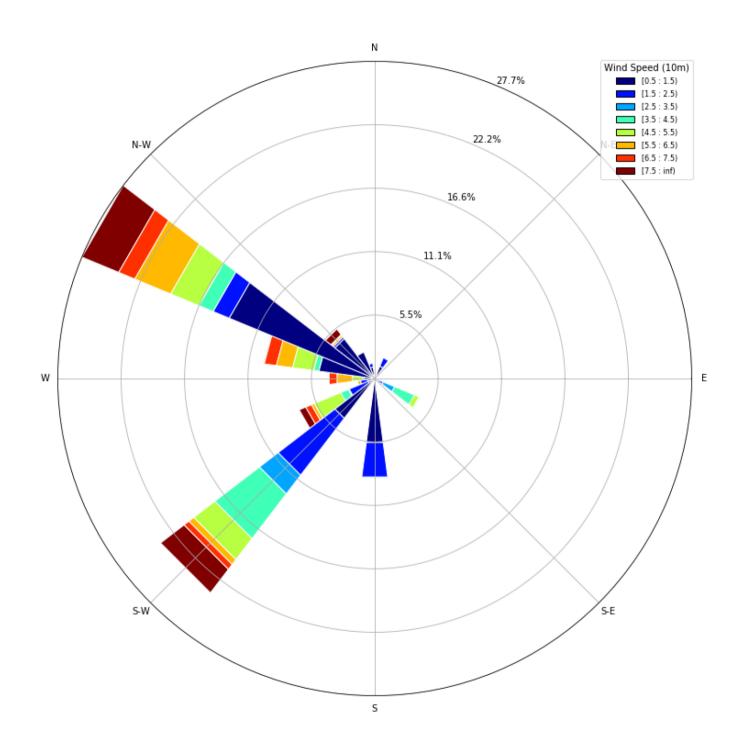
SPL Rank	Point of Reception ID	Height (m)	Distance to Nearest Turbine (m)	Nearest Turbine	Calculated Sound Level (dBA)	Wind Direction	Notes
42	V6295	4.5	660	T49	38.9	CW	Crosswind
43	V6298	4.5	690	T14	38.9	UW	Upwind
44	R3529	4.5	607	T20	38.9	CW	Crosswind
45	V6381	4.5	621	T19	38.9	DW	Excluded – Located too close to receptor already selected (R3099)
46	R3550	7.5	644	T43	38.9	CW	Crosswind
47	V6447	4.5	624	T30	38.9	CW	Crosswind
48	R3289	4.5	700	T26	38.9	CW	Crosswind
49	V6003	4.5	559	T44	38.8	CW	Crosswind
50	V6195	4.5	520	T38	38.8	CW	Participating, Crosswind
51	V6153	4.5	543	T35	38.8	CW	Participating, Crosswind
52	V6057	4.5	560	T46	38.8	CW	Participating, Crosswind
53	R3125	4.5	598	T23	38.8	UW	Upwind
54	R3214	4.5	751	T23	38.8	DW	Selected
55	V6070	4.5	617	T34	38.8	CW	Crosswind
56	R3225	4.5	614	T23	38.7	CW	Crosswind
57	V6202	4.5	620	Т6	38.7	DW	Selected – Monitor erected in adjacent property due to land access restriction on resident's property.
58	V6028	4.5	567	T44	38.7	CW	Crosswind
59	V6336	4.5	611	T23	38.7	UW	Upwind
60	R3321	4.5	717	T14	38.7	CW	Crosswind
61	R3201	4.5	798	T15	38.7	UW	Upwind
62	V6313	4.5	659	T19	38.6	DW	Excluded – Located too close to receptor already selected (R3099)
63	V6278	4.5	614	T15	38.6	UW	Upwind



SPL Rank	Point of Reception ID	Height (m)	Distance to Nearest Turbine (m)	Nearest Turbine	Calculated Sound Level (dBA)	Wind Direction	Notes
64	V6296	4.5	676	T27	38.6	CW	Crosswind
65	V6331	4.5	588	T51	38.6	CW	Crosswind
66	V6442	4.5	554	T4	38.6	CW	Crosswind
67	R3414	4.5	596	T4	38.5	CW	Crosswind
68	V6200	4.5	531	T31	38.5	CW	Participating, Crosswind
69	R3308	1.5	553	T14	38.5	CW	Crosswind
70	V6060	4.5	709	T33	38.5	CW	Crosswind
71	R3170	4.5	690	T19	38.5	DW	Excluded – Located to close to receptor already selected (R3099)
72	R5023	4.5	652	T15	38.5	CW	Crosswind
73	R4001	4.5	618	T46	38.5	CW	Crosswind
74	R3328	4.5	777	T26	38.4	CW	Crosswind
75	V6305	4.5	623	T28	38.4	CW	Crosswind
76	V6283	4.5	687	T26	38.4	CW	Crosswind
77	V6281	4.5	643	T15	38.4	CW	Crosswind
78	V6443	4.5	715	T26	38.4	CW	Crosswind
79	R3398	1.5	566	T52	38.4	DW	Denied Access – Land owner indicated that he was no longer interested in allowing land access
80	V6466	4.5	676	T26	38.4	CW	Crosswind
81	R3251	4.5	662	T7	38.3	CW	Crosswind
82	R3272	4.5	662	T26	38.3	CW	Crosswind
83	R3281	7.5	632	Т7	38.3	DW	Selected – was originally listed as Optional Alternative – MECP requested that this location be included

Appendix C Wind Roses

Project ID: 17283.01 Drawn by: CB Reveiwed by: MAD


Date: February 25, 2020 Revision: 1

North Kent Wind Project Phase 2 R3281 I-Audit Report

Appendix C.1

Supplementary Wind Rose based on Assessment Data **Total Noise**

Project ID: 17283.01 Drawn by: CB Reveiwed by: MAD

Date: February 25, 2020

Revision: 1

North Kent Wind Project Phase 2 R3281 I-Audit Report

Appendix C.2

Supplementary Wind Rose based on Assessment Data Background Noise

Appendix D Turbine Operational Statement from Operator

North Kent Wind 1 LP 2050 Derry Road West, 2nd Floor Mississauga, Ontario L5N 0B9

www.northkentwind.ca

February 13, 2020

Director, Environmental Approvals Access and Service Integration Branch Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto ON M4V1L5

Subject: North Kent Wind 1 LP Renewable Energy Approval number 5272-A9FHRL Condition- Receptor "Phase 2 Receptor I- Audit".

Dear Director

Please accept this letter as confirmation that all turbines tested during the spring 2019 to fall 2019 audit acoustics measurement campaign conducted by Aercoustics LTD. From September 25, 2019 to February 1, 2020 were operating normally for the duration of the campaign, with the exception of specific time periods during which the turbines were placed in remote owner stop to facilitate ambient noise measurements. There is one exception to this: Turbine T06 was down for maintenance between September 20, 2019 and November 22, 2019 but was operating normally outside of this period.

The turbines placed in remote owner stop for ambient measurements were different depending on the receptor targeted, and were as follows:

- R3408: T03 and T04
- R3099: T15, T19, T23, T41 and T51
- R3214:
 - T14, T15, T19, T23, T44 and T51; or
 - T03, T04, T06, T07, T14, T15, T19, T23, T30, T31, T41 and T51.
- V6202:
 - T06, T07, T31 and T32; or

) U wando

- T03, T04, T06, T07, T14, T15, T19, T23, T30, T31, T41 and T51.
- R3281: T7, T30 and T31

The turbines verified for operational measurements across the five measurement locations were as follows:

T03, T04, T06, T07, T12, T14, T15, T19, T23, T26, T27, T28, T30, T31, T32, T38, T39, T41, T42 T44, T45, T46, T49, T51 and T52.

Sincerely,

Jonathan Miranda
Facility Manager
North Kent Wind

C: (289) - 407-8387

Appendix E Tonality Assessment

Created on: 2020-02-24

Project: North Kent Wind Power Project - 2nd Acoustic Immission Audit R3281

Report ID: 17283.01

	R3281 78 Hz (52 - 104 Hz) IEC Tonality Summary									
Wind Bin (m/s)	Data Count	Tone Count	Tonal Presence (%)	Turbine ONLY (dBA)	MECP Sound Level Limit (dBA)	Average Tonal Audibility (dB)	Applicable Tonal Penalty (dB)			
0	0	0	0%	-	40	0.0	0.0			
1	0	0	0%	-	40	0.0	0.0			
2	0	0	0%	-	40	0.0	0.0			
3	103	71	69%	40	40	-2.0	0.0			
4	236	153	65%	40	40	0.1	0.0			
5	516	333	65%	39	40	0.2	0.0			
6	452	269	60%	39	40	-1.9	0.0			
7	173	92	53%	40	43	-3.8	0.0			

⁻ No data points at wind speed

^{**} Insuffcient amount of data points as per RAM-I protocol

Appendix F Calibration Certificates

Calibration Certificates

Details are disclosed in the table below regarding the calibration of the equipment used for the Phase 2 I-Audit campaign at monitor location R3281. The associated calibration certificates are provided in this appendix.

Location	Equipment	Make/Model	Serial Number	Date Calibrated [YYYY-MM-DD]
	Data Acquisition Card	NI 9234	19A4D82	2019-08-26
	Signal Conditioner	PCB 80E09	33661	2019-05-17
R3281	Microphone/ Pre-Amplifier Pair	PCB 378B02	120586	2019-05-16
	Microphone	PCB 377B02	155523	2019-05-16
	Pre-Amplifier	PCB 426E01	39195	2019-05-16
	Weather Anemometer	Vaisala WXT536	P4830521	2018-11-28

Compliant Calibration Certificate

CALIBRATED SNID __19A4D82 DATE: 26-AUG-2019

DVE: 26-AUG-2020

ni.com/calibration

Date Printed:

Certificate Number:

6126156.1

OE Number:

21733250

Customer:

26-AUG-2019

Page:

1 of 14

1004 Middlegate Road

Suite 1100

ONTARIO MISSISSAUGA, L4Y 0G1

Aercoustics Engineering LTD (CA)

CANADA

Manufacturer:

National Instruments

Model:

NI 9234

Serial Number: Part Number:

19A4D82

195551B-01L

Description:

MODULE ASSY, NI 9234, 4 AI CONFIGURABLE

Calibration Date:

26-AUG-2019

Issued Date:

26-AUG-2019

Procedure Name:

NI 9234

Recommended Calibration Due:

26-AUG-2020

Procedure Version:

3.6.1.0

Verification Results:

As Found: Passed As Left: Passed

Lab Technician:

Rodolfo Maldonado

Calibration Executive Version:

4.6.2.0

Driver Info:

NI-DAQmx:17.6.0

Temperature:

23.0° C

Humidity:

42.8% RH

The data found in this certificate must be interpreted as:

As Found

The calibration data of the unit as received by National Instruments, if the unit is functional.

As Left

The calibration data of the unit when returned from National Instruments.

The As Found and As Left readings are identical for units not adjusted or repaired.

This calibration conforms to ANSI/NCSL Z540.1 requirement.

The TUR (Test Uncertainty Ratio) of this calibration is maintained at a ratio of 4:1 or greater, unless otherwise indicated in the measurements. A TUR determination is not possible for singled sided specification limits and therefore the absence of a value should not be interpreted as a TUR of 4:1 or greater, but rather undetermined. When provided, the expanded measurement uncertainty is calculated according to the Guide to the Expression of Uncertainty in Measurement (GUM) for a confidence level of approximately 95%.

Measured values greater than the Manufacturer's specification limits are marked as 'Failed', measured values within the Manufacturer's specifications are marked as 'Passed'. NI Service Labs do not consider uncertainties when making statements of compliance to a specification.

This certificate applies exclusively to the item identified above and shall not be reproduced except in full, without National Instruments written authorization. Calibration certificates without signatures are not valid.

The Calibration Certificate can be viewed or downloaded online at www.ni.com/calibration/. To request a hard copy, contact NI Customer Service at Tel:(800) 531-5066 or Email orders@ni.com.

Ted Talley

Technical Manager

Template Revision: CL-0015 Rev 1.0

National Instruments Calibration Services Austin Building A 11500 N MoPac Expwy **AUSTIN, TX 78759-3504** Tel: (800) 531-5066

Page:

Calibration Notes

Asset	Verification and adjustment were performed.	will be written and a second	
Туре	Note	Charles to the Sale Basic Basi	283 X-16.22
	- Land		

Standards Used

Manufacturer	Model	Type	Tracking Number	Calibration Due	Notes
FLUKE	5700A/EP	Calibrator	2556	30-AUG-2019	
National Instruments	PXI-4461	Function generator	9514	06-MAY-2020	the all sky
National Instruments	PXI-4071	Digital multimeter	9083	13-AUG-2020	A CASA
National Instruments	PXI-4132	SMU	9166	15-MAY-2020	the standing the standard

The standards used in this calibration are traceable to NIST and/or other National Measurement Institutes (NMI's) that are signatories of the International Committee of Weights and Measures (CIPM) mutual recognition agreement (MRA).

USA

To! 1885 11' 354

Calibration Results

Verify Accuracy

Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
5 V	0	4.00000 V	3.99520 V	3.99999 V	4.00480 V	Passed	i de la companya de l
5 V	0	0.00000 V	-0.00120 V	0.00001 V	0.00120 V	Passed	
5 V	0	-4.00000 V	-4.00480 V	-3.99993 V	-3.99520 V	Passed	The same of the sa
5 V	1	4.00000 V	3.99520 V	3.99993 V	4.00480 V	Passed	
5 V	1	0.00000 V	-0.00120 V	-0.00003 V	0.00120 V	Passed	-
5 V	1	-4.00000 V	-4.00480 V	-3.99995 V	-3.99520 V	Passed	14
5 V	2	4.00000 V	3.99520 V	3.99993 V	4.00480 V	Passed	
5 V	2	0.00000 V	-0.00120 V	-0.00001 V	0.00120 V	Passed	
5 V	2	-4.00000 V	-4.00480 V	-3.99993 V	-3.99520 V	Passed	
5 V	3	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed	
5 V	3	0.00000 V	-0.00120 V	0.00001 V	0.00120 V	Passed	
5 V	3	-4.00000 V	-4.00480 V	-3.99995 V	-3.99520 V	Passed	
	8 Range 5 V 5 V 5 V 5 V 5 V 5 V 5 V 5 V 5 V 5	Range Channel 5 V 0 5 V 0 5 V 0 5 V 1 5 V 1 5 V 1 5 V 2 5 V 2 5 V 2 5 V 2 5 V 3 5 V 3 5 V 3	Range Chainlet Test value 5 V 0 4.00000 V 5 V 0 0.00000 V 5 V 0 -4.00000 V 5 V 1 4.00000 V 5 V 1 -4.00000 V 5 V 2 4.00000 V 5 V 2 -4.00000 V 5 V 2 -4.00000 V 5 V 2 -4.00000 V 5 V 3 4.00000 V 5 V 3 0.00000 V	Range Chainer Test Value Low Limit 5 V 0 4.00000 V 3.99520 V 5 V 0 -0.00120 V -0.00120 V 5 V 0 -4.00000 V -4.00480 V 5 V 1 0.00000 V -0.00120 V 5 V 1 -4.00000 V -4.00480 V 5 V 2 4.00000 V -0.00120 V 5 V 2 0.00000 V -0.00120 V 5 V 2 -4.00000 V -4.00480 V 5 V 3 4.00000 V 3.99520 V 5 V 3 0.00000 V -0.00120 V	Range Channel Test value Low Limit Reading 5 V 0 4.00000 V 3.99520 V 3.99999 V 5 V 0 0.00000 V -0.00120 V 0.00001 V 5 V 0 -4.00000 V -4.00480 V -3.99993 V 5 V 1 0.00000 V -0.00120 V -0.00003 V 5 V 1 -4.00000 V -4.00480 V -3.99995 V 5 V 2 4.00000 V 3.99520 V 3.99993 V 5 V 2 0.00000 V -0.00120 V -0.00001 V 5 V 2 -4.00000 V -4.00480 V -3.99993 V 5 V 2 -4.00000 V -4.00480 V -3.99993 V 5 V 3 4.00000 V 3.99520 V 4.00000 V 5 V 3 0.00000 V -0.00120 V 0.00000 V	Range Chainer Test value Low Limit Reading High Limit 5 V 0 4.00000 V 3.99520 V 3.99999 V 4.00480 V 5 V 0 0.00000 V -0.00120 V 0.00001 V 0.00120 V 5 V 1 4.00000 V 3.99520 V 3.99993 V 4.00480 V 5 V 1 0.00000 V -0.00120 V -0.00003 V 0.00120 V 5 V 1 -4.00000 V -4.00480 V -3.99995 V -3.99520 V 5 V 2 4.00000 V 3.99520 V 3.99993 V 4.00480 V 5 V 2 0.00000 V -0.00120 V -0.00001 V 0.00120 V 5 V 2 -4.00000 V -4.00480 V -3.99993 V -3.99520 V 5 V 3 4.00000 V -4.00480 V -3.99993 V -3.99520 V 5 V 3 4.00000 V 3.99520 V 4.00000 V 4.00480 V 5 V 3 0.00000 V -0.00120 V 0.00001 V 0.00120 V	Range Chainer Test Value Low Limit Reading High Limit Status 5 V 0 4.00000 V 3.99520 V 3.99999 V 4.00480 V Passed 5 V 0 0.00000 V -0.00120 V 0.00001 V 0.00120 V Passed 5 V 1 4.00000 V 3.99520 V 3.99993 V 4.00480 V Passed 5 V 1 0.00000 V -0.00120 V -0.00003 V 0.00120 V Passed 5 V 1 -4.00000 V -4.00480 V -3.99995 V -3.99520 V Passed 5 V 2 4.00000 V 3.99520 V 3.99993 V 4.00480 V Passed 5 V 2 0.00000 V -0.00120 V -0.00001 V 0.00120 V Passed 5 V 2 -4.00000 V -4.00480 V -3.99993 V -3.99520 V Passed 5 V 3 4.00000 V -4.00480 V -3.99993 V -3.99520 V Passed 5 V 3 4.00000 V 3.99520 V

Verify Gain N	/latching		0.W01750013-0					tectAretatignal consults
Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	
1 to	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	**************************************
3	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	

Verify Phase Matching									
Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes		
51200	16384	1000 Hz	-0.085 Degrees	-0.011 Degrees	0.085 Degrees	Passed			
51200	16384	1000 Hz	-0.085 Degrees	0.015 Degrees	0.085 Degrees	Passed	Test the leaves a		
51200	16384	1000 Hz	-0.085 Degrees	-0.015 Degrees	0.085 Degrees	Passed			
51200	16384	1000 Hz	-0.085 Degrees	-0.010 Degrees	0.085 Degrees	Passed	B _		
51200	16384	10000 Hz	-0.490 Degrees	-0.100 Degrees	0.490 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	0.146 Degrees	0.490 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	-0.146 Degrees	0.490 Degrees	Passed			
51200	16384	10000 Hz	-0.490 Degrees	-0.099 Degrees	0.490 Degrees	Passed			
	Rate 51200 51200 51200 51200 51200 51200 51200	Rate Samples per Channel 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384 51200 16384	Rate Samples per Channel Test Value 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 1000 Hz 51200 16384 10000 Hz 51200 16384 10000 Hz 51200 16384 10000 Hz 51200 16384 10000 Hz	Rate Samples per Channel Test Value Low Limit 51200 16384 1000 Hz -0.085 Degrees 51200 16384 10000 Hz -0.490 Degrees	Rate Samples per Channel Test Value Low Limit Reading 51200 16384 1000 Hz -0.085 Degrees -0.011 Degrees 51200 16384 1000 Hz -0.085 Degrees 0.015 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.015 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.010 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.100 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.146 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.146 Degrees 51200 16384 10000 Hz -0.490 Degrees -0.146 Degrees	Rate Samples per Channel Test Value Low Limit Reading High Limit 51200 16384 1000 Hz -0.085 Degrees -0.011 Degrees 0.085 Degrees 51200 16384 1000 Hz -0.085 Degrees 0.015 Degrees 0.085 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.015 Degrees 0.085 Degrees 51200 16384 1000 Hz -0.085 Degrees -0.010 Degrees 0.085 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.146 Degrees 0.490 Degrees 51200 16384 10000 Hz -0.490 Degrees 0.146 Degrees 0.490 Degrees 51200 16384 10000 Hz -0.490 Degrees Degrees 0.490 Degrees 51200 16384 10000 Hz -0.490 Degrees Degrees 0.490 Degrees	Rate Samples per Channel Test Value Low Limit Reading High Limit Status 51200 16384 1000 Hz -0.085 Degrees -0.011 Degrees 0.085 Degrees Passed 51200 16384 1000 Hz -0.085 Degrees 0.015 Degrees 0.085 Degrees Passed 51200 16384 1000 Hz -0.085 Degrees -0.015 Degrees 0.085 Degrees Passed 51200 16384 1000 Hz -0.085 Degrees -0.010 Degrees 0.085 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.146 Degrees 0.490 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.146 Degrees 0.490 Degrees Passed 51200 16384 10000 Hz -0.490 Degrees Degrees Degrees Passed 51200 16384 10000 Hz -0.490 Degrees 0.0490 Degrees Passed		

Verify	Common	Mode	Rejection	Ratio
--------	--------	------	-----------	-------

Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	40.000 dB	51.385 dB	100.000 dB	Passed	
1	51200	16384	1000 Hz	40.000 dB	50.076 dB	100.000 dB	Passed	
2	51200	16384	1000 Hz	40.000 dB	51.071 dB	100.000 dB	Passed	
3	51200	16384	1000 Hz	40.000 dB	50.282 dB	100.000 dB	Passed	

Tel- (800) 534 5065

Certificate Number: 6126156.1

Page:

7 of 14

Verify IEPE	Current							
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	0.01 A	2.000 mA	2.000 mA	2.085 mA	2.200 mA	Passed	on win one one
1	51200	0.01 A	2.000 mA	2.000 mA	2.083 mA	2.200 mA	Passed	
2	51200	0.01 A	2.000 mA	2.000 mA	2.084 mA	2.200 mA	Passed	
3	51200	0.01 A	2.000 mA	2.000 mA	2.082 mA	2.200 mA	Passed	And with the contract of

Verify	IEPE	Comp	liance	Voltage
--------	------	------	--------	---------

Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19.000 V	20.820 V	24.000 V	Passed	
1	51200	24 V	2 mA	19.000 V	20.814 V	24.000 V	Passed	
2	51200	24 V	2 mA	19.000 V	20.816 V	24.000 V	Passed	
3	51200	24 V	2 mA	19.000 V	20.817 V	24.000 V	Passed	7 B 2

USA Tel: (888) 524 588

Verify Acc	uracy					is an every last of the		The thirty of the Colonian
Lower Range	Upper Range	Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
-5 V	5 V	0	4.00000 V	3.99520 V	4.00000 V	4.00480 V	Passed	
-5 V	5 V	0	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed	The second second
-5 V	5 V	0	-4.00000 V	-4.00480 V	-3.99998 V	-3.99520 V	Passed	Construction of the Section of the S
-5 V	5 V	1.	4.00000 V	3.99520 V	3.99998 V	4.00480 V	Passed	
-5 V	5 V	1	0.00000 V	-0.00120 V	-0.00001 V	0.00120 V	Passed	DOCAL DISERS DIRECTOR
-5 V	5 V	1	-4.00000 V	-4.00480 V	-3.99996 V	-3.99520 V	Passed	
-5 V	5 V	2	4.00000 V	3.99520 V	4.00002 V	4.00480 V	Passed	80 H2
-5 V	5 V	2	0.00000 V	-0.00120 V	-0.00000 V	0.00120 V	Passed	10 20
-5 V	5 V	2	-4.00000 V	-4.00480 V	-3.99998 V	-3.99520 V	Passed	15 10
-5 V	5 V	3	4.00000 V	3.99520 V	4.00001 V	4.00480 V	Passed	
-5 V	5 V	3	0.00000 V	-0.00120 V	0.00000 V	0.00120 V	Passed	-
-5 V	5 V	3	-4.00000 V	-4.00480 V	-3.99998 V	-3.99520 V	Passed	

Max Gain Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	
1	10240	10240	4 V	-0.040 dB	-0.000 dB	0.040 dB	Passed	18 . 5s
2	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	E INTE
3	10240	10240	4 V	-0.040 dB	0.000 dB	0.040 dB	Passed	

USA Tel: (888) 521 5861

Verify Phase	Matching	Ber e a sue						
Max Phase Difference for Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	-0.085 Degrees	-0.011 Degrees	0.085 Degrees	Passed	
1	51200	16384	1000 Hz	-0.085 Degrees	0.015 Degrees	0.085 Degrees	Passed	
2	51200	16384	1000 Hz	-0.085 Degrees	-0.015 Degrees	0.085 Degrees	Passed	Tanker Process
3	51200	16384	1000 Hz	-0.085 Degrees	-0.009 Degrees	0.085 Degrees	Passed	
0	51200	16384	10000 Hz	-0.490 Degrees	-0.100 Degrees	0.490 Degrees	Passed	2
1	51200	16384	10000 Hz	-0.490 Degrees	0.146 Degrees	0.490 Degrees	Passed	2
2	51200	16384	10000 Hz	-0.490 Degrees	-0.146 Degrees	0.490 Degrees	Passed	
3	51200	16384	10000 Hz	-0.490 Degrees	-0.099 Degrees	0.490 Degrees	Passed	1

Verify	Common	Mode	Rejection	Ratio
--------	--------	------	-----------	-------

Channel	Rate	Samples per Channel	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	16384	1000 Hz	40.000 dB	51.384 dB	100.000 dB	Passed	
1	51200	16384	1000 Hz	40.000 dB	50.078 dB	100.000 dB	Passed	
2	51200	16384	1000 Hz	40.000 dB	51.111 dB	100.000 dB	Passed	5
3	51200	16384	1000 Hz	40.000 dB	50.272 dB	100.000 dB	Passed	to the second

Certificate Number: 6126156.1

Page:

13 of 14

Verify IEPE	Verify IEPE Current									
Channel	Rate	DMM Range	Test Value	Low Limit	Reading	High Limit	Status	Notes		
0	51200	0.01 A	2.000 mA	2.000 mA	2.072 mA	2.200 mA	Passed	in the second		
1	51200	0.01 A	2.000 mA	2.000 mA	2.084 mA	2.200 mA	Passed	A		
2	51200	0.01 A	2.000 mA	2.000 mA	2.084 mA	2.200 mA	Passed	and the second s		
3	51200	0.01 A	2.000 mA	2.000 mA	2.082 mA	2.200 mA	Passed			

Channel	Rate	SMU Voltage Limit	Test Value	Low Limit	Reading	High Limit	Status	Notes
0	51200	24 V	2 mA	19.000 V	20.820 V	24.000 V	Passed	
1	51200	24 V	2 mA	19.000 V	20.816 V	24.000 V	Passed	grand to the
2	51200	24 V	2 mA	19.000 V	20.819 V	24.000 V	Passed	1.4"
3	51200	24 V	2 mA	19.000 V	20.818 V	24.000 V	Passed	

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics

Reference #: 157211

Model: 480E09

Customer: Aero

Aercoustics Engineering Ltd Mississauga, ON

Descr.: Conditioning Amplifier

Serial #: 00033661

P. Order:

2019.05.16C

Asset #: 00140

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our Quality System system complies with the requirements of ISO-9001-2015 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: May 17, 2019

By: Ohum

Cal. Due:

May 17, 2021

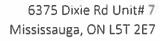
Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-255 J-301 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST


6375 Dixie Rd, Mississauga, ON, LST 2E7

Phone : 800-668-7440

Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies

Tel: (905)565-1583 Fax: (905)565-8325

Form: 480E09	Approved by: J. Raposo	Jun-18	Ver 1.2

Calibration Report for Certificate:

157211

Make	Model	Serial №	Asset	
PCB Piezotronics	480E09	00033661	00140	

Test	Input	Min	Reading	Max	In/Out
	·				

Gain accuracy at 1 kHz

Gain Set

• 1	1.000 V	0.9800	0.9998 V	1.0200	In
• 10	0.100 V	0.9800	1.0002 V	1.0200	ln
• 100	0.010 V	0.9800	0.9994 V	1.0200	In

Gain Flatness

Gain • 1

10 Hz	1.000 V	-5.0	0.2%	5.0	ln
10 kHz	1.000 V	-5.0	0.0%	5.0	In
50 kHz	1.000 V	-5.0	0.1%	5.0	ln
100 kHz	1.000 V	-5.0	0.0%	5.0	In

Gain • 10

10 Hz	0.100 V	-5.0	0.2%	5.0	ln
10 kHz	0.100 V	-5.0	0.0%	5.0	In
50 kHz	0.100 V	-5.0	-0.1%	5.0	In
100 kHz		-5.0	-1.0%	5.0	In

Gain • 100

10 Hz	0.010 V	 -5.0	0.0%	5.0	ln
10 kHz	0.010 V	-5.0	0.8%	5.0	In
50 kHz	0.010 V	-5.0	1.0%	5.0	In

CERTIFICATE of CALIBRATION

Make: PCB Piezotronics

Reference #: 157207

Model: 378B02

Customer: Aercoustics Engineering Ltd

Mississauga, ON

Descr.: Microphone System 1/2" Free Field

Serial #: 120586

P. Order:

2019.05.16C

Asset #: 00811

Cal. status: Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our Quality System system complies with the requirements of ISO-9001-2015 and is registered under certificate CA96/269, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated: May 16, 2019

Cal. Due:

May 16, 2021

Petro Onasko

Temperature : 23 °C \pm 2 °C Relative Humidity : 30% to 70%

Standards used: J-216 J-324 J-333 J-420 J-512

Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST

6375 Dixie Rd. Mississauga, ON, L5T 2E7

Phone: 800-668-7440

Fax: 905 565 8325

http://www.navair.com e-Mail: service @ navair.com

The copyright of this document is the property of Navair Technologies

Tel: (905) 565-1583 Fax: (905) 565-8325

Form: 378B02 Approved by: JR Feb-16 V	Ver 1.0
---------------------------------------	---------

Calibration Report for Certificate:

157207

Make	Model	Serial	Asset
PCB Piezotronics	378B02	120586	00811
PCB Piezotronics	426E01	039195	00811
PCB Piezotronics	377B02	155523	00811

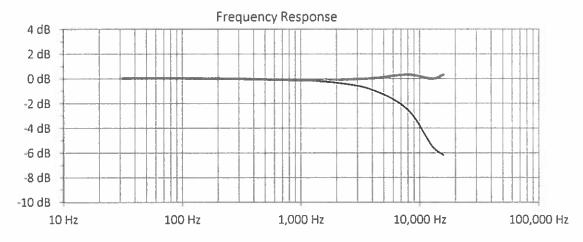
Sensitivity at 250 Hz

Specs Nom	Unit	Unit Min Reading		Max	In/Out
50	mV/Pa	39.72	42.40	62.94	In
-26.02	dB re 1V/Pa	-28.02	-27.45	-24.02	In
0	dB re 50mV/Pa	-2	-1.43	2	In

Ambient Conditions: Static Pressure

98.9 kPa

Temperature


23.1°C

Rel.Humidity

43.0%

Frequency response

	Lower	Upper	
Freq	Pressure	Free Field	
Hz	dB	dB	
31.5	0.03	0.03	
63.1	0.04	0.04	ş
125.9	0.03	0.03	
251.3	0.00	0.00	ref
502.5	-0.05	-0.05	
1005.1	-0.15	-0.13	
1978.7	-0.33	-0.07	
3957.5	-0.89	0.02	
7914.9	-2.48	0.32	
12663	-5.43	0.00	
15830	-6.18	0.32	

Test report no. H31-18480107

TEST REPORT

Product family

WXT530 series

Product type

WXT536

Order code Serial number 6B1B2A4B1B1B

Manufacturer

P4830521 Vaisala Oyj, Finland

Test date

28 November 2018

This test report certifies that the product was thoroughly tested and inspected, and found to meet its published test limits when it was shipped from Vaisala.

Test results

Test	Result	Lower limit	Upper limit	Unit
Rain response	401	345	575	mV
Zero wind speed	0	0	0.4	m/s
Pressure difference	-0.22	-1	1	hPa
Temperature difference	0.06	-2	2	°C
Humidity difference	-0.77	-10	10	%RH
Heating current	0.75	0.6	0.8	Α
Current (service port)	1.07	0.5	2	mA
Communication (service port)	pass	PASS	PASS	711
Current (main port)	0.73	0.5	2	mA
Communication (main port)	pass	PASS	PASS	-

Ambient conditions / Humidity 15.39 ±5 %RH, Temperature 22.22 ±1 °C, Pressure 1028.01 ±1 hPa.

Technician

Signatu

This report shall not be reproduced except in full, without the written approval of Vaisala.

DOC233154-A.doc

Calibration sheet no. H31-18480108

CALIBRATION SHEET

Instrument Serial number Manufacturer Test date WXTPTU P4350033

Vaisala Oyj, Finland 31 October 2018

This test report certifies that the instrument was thoroughly tested and inspected, and found to meet its published test limits when it was shipped from Vaisala.

Calibration results

Test phase of calibration process	Reference value	Observed value	Difference*	Uncertainty**
Pressure	1076.6	1076.5	-0.1	± 0.4 hPa
Pressure	900.4	900.4	0	± 0.4 hPa
Pressure	798	798	0	± 0.4 hPa
Pressure	599.3	599.3	0	± 0.4 hPa
Temperature	59.7	59.7	0	± 0.2 °C
Temperature	-5.7	-5.7	0	± 0.2 °C
Temperature	-32.5	-32.5	0	± 0.2 °C
Temperature	24.8	24.8	0	± 0.2 °C
Temperature	-51.9	-51.9	0	± 0.2 °C
Relative humidity	29.5	29.5	0	± 2 %RH
Relative humidity	57.7	57.7	0	± 2 %RH
Relative humidity	91.4	91.4	0	± 3 %RH

^{*}The test points for error values are polynomial fitting curve fitting points.

Traceability

The working standards for pressure and temperature are calibrated at Vaisala Measurement Standards Laboratory (MSL) by using MSL working standards traceable to National Institute of Standards and Technology (NIST, USA). The relative humidity values are calculated from measured temperature and dew-point temperature values. The dew-point working standards are traceable to the Finnish National Humidity Laboratory (MIKES).

Signature

Technician

This report shall not be reproduced except in full, without the written approval of Vaisala,

Doc218938-A

^{**}The calibration uncertainty given at 95 % confidence level, k = 2

Appendix G Power Thresholds for 90% Sound Power

Appendix G - Power Thresholds for 90% Sound Power

Project: North Kent Wind Power Project - 2nd Acoustic Immission Audit

Report ID: 17283.01

*Wind bins for interpolation are highlighted in light blue

Table G.1: NKWPP 2.772 MW Turbine - Measured Power and Sound Power

T36 (2.772 MW) E-Audit Test Results Summary [4]												
IEC 61400-11 Test	7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13
Power (kW)	1236	1481	1766	2051	2291	2530	2629	2727	2748	2768	2770	#N/A
SPL (dBA)	101.4	102.9	103.3	103.3	103.2	103.1	103.0	102.6	102.4	102.4	102.1	#N/A

Table G.2: NKWPP 2.942 MW Turbine - Measured Power and Sound Power

T33 (2.942 MW) E-Audit Test Results Summary [5]												
IEC 61400-11 Test	7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13
Power (kW)	#N/A	1483	1774	2065	2328	2591	2728	2865	2900	2934	2938	2942
SPL (dBA)	#N/A	103.0	104.1	104.4	104.5	104.3	104.0	103.9	103.8	103.6	103.6	103.3

Table G.3: NKWPP 3.2 MW Turbine - Measured Power and Sound Power

T06 (3.2 MW) E-Audit Test Results Summary [6]												
IEC 61400-11 Test	7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13
Power (kW)	#N/A	1485	1785	2085	2384	2683	2879	3074	3130	3186	3193	3199
SPL (dBA)	#N/A	103.9	105.3	106.1	106.1	105.6	105.5	105.6	105.5	105.5	105.2	105.4

Table G.4: Power Thresholds for 90% Sound Power

	maximum sound power level (dBA)	90% sound power level (dBA)	electrical power at 90% sound level (kW)	percentage of rated power
2.772 MW	103.3	102.9	1489	54%
2.942 MW	104.5	104.0	1749	59%
3.2 MW	106.1	105.7	1923	60%

Page 1 of 1

Created on: 2019-07-03

Appendix H I-Audit Checklist

Appendix H7: I-Audit checklist Wind Energy Project – Screening Document – Acoustic Audit Report – Immission Information Required in the Acoustic Audit Report – Immission

Item # Description 1 Did the Sound level Meter meet the Type 1 Sound level meter	Complete?	
	✓	Comment
requirements according to the IEC standard 61672-1 Sound lev	el Meters.	
Part 1: Specifications? Section D2.1.1	,	
Was the complete sound measurement system, including any remaining and remaining an	ecording,	
data logging or computing systems calibrated immediately befo	e and	
after the measurement session at one or more frequencies usin		
acoustic calibrator on the microphone (must not exceed ±0.5dB		
D2.1.3		
3 Are valid calibration certificate(s) of the noise monitoring equipremate a second control of the noise monitoring equipremates.	nent and	
calibration traceable to a qualified laboratory? Is the validity dur	ation of the	
calibration stated for each item of equipment? Section D2.3		
4 Was the predictable worst case parameters such as high wind s	hear and	
wind direction toward the Receptor considered? Section D3.2	. 57	
Is there a Wind Rose showing the wind directions at the site? S	ection D7	
(1e) 6 Did the results cover a wind speed range of at least 4-7 m/s as	outlined in	
section D 3.8.?	outlined in	
7 Was the weather report during the measurement campaign incl	ıded in the ✓	
report? Section D7 (1c)	adda iii tiid	
8 Did the audit state there was compliance with the limits at each	wind ✓	
speed category? Section D6		
Are pictures of the noise measurement setup near Point of rece	otion 🗸	
provided? Section D3.3.2 & D3.4		
10 Was there justification of the Receptor location choice(s) prior to	· ·	
commencement of the I-Audit? Section D4.1		
11 Was there sufficient valid data for different wind speeds? Section	n D5.2 # 3	
12 Was the turbine (operational) specific information during the me	asurement <	
campaign in tabular form (i.e. wind speed at hub height, anemo		
speed at 10 m height, air temperature and pressure and relative		
Section D3.7	**	
13 Were all the calculated standard deviations at all relevant integer	er wind 🗸	
speeds provided? Section D7 (2d)		
14 Compliance statement	√	
15 All data included in an Excel spreadsheet	√ 	
16 If deviations from standard; was justification of the deviations pr	ovided O	To ensure conservative
		results, 90% Sound Power
		filter was used in place of 85%
		Power filter: See Section 6.5
		and Appendix G for
		justification.
		To ensure conservative
		results, a 22 dBA contribution
		was added to all Total Noise
		values to account for the non-
		operational period of turbine
		T06. See Section 6.5 for
		justification.